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February 2, 1968

Dr. Frederick Seitz, President
National Academy of Sciences
2101 Constitution Avenue
Washington, D.C. 20418

Dear Dr. Seitz:

The Committee on Science and Public Policy takes pleasure in
forwarding to you the report of the Committee on Support of
Research in the Mathematical Sciences. Our committee has
reviewed this report at several stages in its development, and we
feel that it presents a clear and cogent case for the support of the
mathematical sciences and a good picture of the present state of
both research and education in mathematics and related disciplines.
The ex traordinary rate at which classical mathematical theorems
have fallen before the onslaught of young American mathematicians
in recent years is impressive, as is the leading position acquired
by the United States in recent times.

The report calls attention to the penetration of mathematics
and mathematical modes of thought into many new areas of
scholarship and the resultant great increase in the relative
enrollment in undergraduate mathematics courses, especially at
the upper levels. It also brings out the increasing importance of
mathematical methods in industry and government, the rapid
growth in employment of mathematical scientists outside the
universities, and the pace of growth of mathematical sciences
relative to that of all other disciplines.

The report calls attention to the special problem of computer
science in universities, brought about by its high cost relative
to the rest of mathematical research and education and by the fact
that it is both a scientific and an engineering discipline, which
has made it difficult to fit into the academic structure. Meaningful
research in computer science often requires rather large-scale
support for complex projects of a partly developmental nature
that do not always lend themselves to the project-grant type of
support typical in pure mathematics and some other scientific
disciplines. The development of computer science only as a
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by-product of the application of computer techniques in other
fields often results in failure to develop a distinctive body of
theory and technique in computer science in its own right.

The report identifies special problems concerning mathematical
statistics and physical (i.e., classical applied) mathematics. In
physical mathematics the problem is not the need for rapid growth
of financial support, as in computer science, but for a place in the
academic structure that does not tie it too closely to a particular
set of applications. The authors of this report feel that there
are too few distinguished applied-mathematics groups in American
universities, and that special encouragement is needed for
building such groups. Whatever place applied mathematical
sciences find in the academic structure, however, it is essential to
maintain a strong and continuing interaction between these
sciences and pure mathematicsan interaction in which ideas and
people must move in both directions.

An outstanding feature of this report in comparison with some
of the earlier disciplinary reports is the attention it devotes to
questions of education, not only for mathematical scientists but
also for the many users of mathematics.

The Committee on Support of Research in Mathematical
Sciences is to be congratulated not only for its impressive work in
the preparation of the present volume but also for the valuable
contributions of two supplementary volumes pro Xu-ced under its
aegis. One of these, the detailed report of the Committee's Panel
on Undergraduate Education, analyzes the uniquely demanding
special problems of American undergraduate education in the
mathematical sciences and makes many suggestions for dealing
with these problems. The other, a collection of twenty-two essays
by distinguished mathematical scientists, brings together, in a
form accessible to a wide range of readers, expositions of the
achievements, traditions, and prospects in a rich variety
of mathematical fields.

Sincerely,

HARVEY BROOKS, Chairman
Committee on Science and Public Policy

iv



THIS REPORT on the mathematical sciences is another in the series
of comprehensive survey reports on major fields of science pre-

pared under the aegis of the Academy's Committee on Science and
Public Policy.

With the growing importance of the mathematical sciences, both
in their own right and through their penetration of other sciences
and of technology, it has become clear that a report on mathe-
matics should be added to the survey reports. Thus the Committee
on Support of Research in the Mathematical Sciences was appointed
to undertake the preparation of such a report under the chairman-
ship of Professor Lipman Bers.

I am pleased to express gratitude to the Committee for its dedi-
cated work. I trust the findings and recommendations set forth here
will prove useful to those with responsibilities in the continuing
support of American science.

FREDERICK SEITZ, President
National Academy of Sciences
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Foreword

The Committee on Support of Research in the Mathematical
Sciences (cosRms) was appointed by the Division of Mathematical
Sciences of the National Research Council at the instigation of the
Committee on Science and Public Policy of the National Academy
of Sciences. Our task was to assess the present status and the pro-
jected future needs, especially fiscal needs, of the mathematical
sciences. It was clear to us from the very beginning of our work
that our report would have to differ somewhat in structure from
the corresponding reports for other disciplines that had already
appeared.

Though mathematics provides the common language for all sci-
ences, we realize that even scientific readers of our report, let alone
nonscientists, may feel that they are not adequately informed about
what mathematical research, especially modern mathematical
research, consists of. Similarly, even professional mathematicians,
or scientists who customarily use mathematics in their work, may
be unaware of the manifold applications of mathematics in various
sciences and technologies, especially the new applications influenced
by the computer revolution.

To provide additional background of factual information con-
cerning the mathematical sciences, we are supplementing our report
with a collection of essays, written by distinguished authors on
various topics in mathematics, in the applied mathematical sciences,
and in the applications of mathematics. With three exceptions,
which are reprints, these essays were written expressly for this col-
lection. They are intended not only for the nonmathematical
scientist but also for the scientifically oriented layman.
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Mathematics pervades our whole educational system. As a matter
of fact, we believe that the mathematical community has no obli-
gations more important than those concerned with education, the
most critical area being collegiate education. We have, therefore,
included in our report questions of policy regarding higher edu-
cation. Our Panel on Undergraduate Education has carried out an
intensive study of this area; its report is presented in a separate
volume of our report.

Simultaneously with our activities, the Conference Board of
the Mathematical Sciences has bcen carrying out a survey of research
and education in mathematics, and its Survey Committee has agreed
to act as a fact-finding agency for our Committee. The Conference
Board Survey Committee's report will contain a wealth of factual
and statistical material pertaining to the matters discussed in our
report. We take this opportunity to express our gratitude to the
Survey Committee and to the Ford Foundation which supported
their work,.

The activities of our Committee have been financed mainly by
a grant from the National Science Foundation. This has been sup-
plemented by smaller grants from the Sloan Foundation, the Con-
ference Board of the Mathematical Sciences, the American Mathe-
matical Society, the Association for Computing Machinery, the
Association for Symbolic Logic, the Institute of Mathematical
Statistics, the Mathematical Association of America, the National
Council of Teachers of Mathematics, the Operations Research
Society of America, and the Society for Industrial and Applied
Mathematics. Columbia University has generously provided us with
office space and many auxiliary services. To all these organizations
we express our thanks.

We are deeply indebted to the authors of the essays, to the chair-
men and members of our panels, and to the many other individuals
who have contributed their time and expertise to our undertaking.

January 20, 1968

x

LIPMAN BERS

Chairman, Committee on Support
of Research in the
Mathematical Sciences
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Mathematics and Society

The recent history of mathematics has been like that of science
generally. The number of investigators has grown rapidly and so
have the pace and quality of the research. An intellectual leadership
that used to reside in Western Europe is now shared by Americans
and others.

Today, society, especially through other sciences and technologies,
makes unprecedented demands on mathematics and on the com-
munity of mathematical scientists. The purpose of this report is to
identify the major demands, to assess the capabilities of the mathe-
matical community to satisfy them, and to propose measures for
preserving and extending these capabilities.

THE MATHEMATIZATION OF CULTURE

Mathematics has long played a central role in the intellectual and
technological history of mankind. Yet this statement hardly begins
to convey or account for the current explosive penetration of
mathematical methods into other disciplines, amounting to a virtual
"mathematization of culture."

Mathematics can be described as the art of symbolic reasoning.
Mathematics is present wherever chains of manipulations of ab-
stract symbols are used; such chains may occur in the mind of a
human being, as marks on paper, or in an electronic computer.
Symbolic reasoning appears to have been first used in connection
with counting. For this reason, mathematics is sometimes described.

3
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4 Summary

though not completely accurately, as the science of numbers. In
fact, it turns out that all symbolic reasoning may be reduced to
manipulation of whole numbers; and it is this fact that makes the
digital computer into the universal tool it is.

Mathematics as we know it originated more than 2,000 years
ago with the Greeks. They transformed into a deductive science
the collection of facts and procedures about numbers and geometric
figures known to the older civilizations of Egypt and Babylon. The
Greeks applied mathematics only to astronomy and statics. The
possibility of applying it to other sciences, in particular to dynamics,
was discovered in the sixteenth and seventeenth centuries. This dis-
covery revolutionized mathematics; it led to the creation of calculus
and thereby made modern physical science and technology possible.

The development of the physical sciences continues to use mathe-
matical techniques and concepts. So do the new technologies based
on the discoveries of the physical sciences. Furthermore, these sci-
ences and technologies use mathematical techniques of ever-increas-
ing sophistication, so that the mounting role of physical sciences
and technologies in the contemporary world is a dominant aspect
of the mathematization of culture. It is, however, not the only
aspect. Mathematical methods are penetrating into fields of knowl-
edge that have been essentially shielded from mathematics until
not long ago; for instance, the life sciences. The twentieth-century
penetration of mathematical methods into the biological sciences
has come about in several ways, perhaps most importantly through
the increasing study of biological phenomena by the methods of
chemical physics. The development of statistics, which the needs
of the biological sciences helped to stimulate, has led to the exten-
sive field of biostatistics. This has connections with mathematical
genetics, which has evolved out of the celebrated Mendelian laws
of inheritance, and with mathematical ecology, which is concerned
with such interactions as competition for food or the feeding of
one species on another. Differential-equation models for the con-
duction of signals along nerve fibers have had notable success.
Computer simulation of functions of living organisms is just one
of the ways in which computers are becoming increasingly im-
portant in the biological sciences.

Mathematics is penetrating the social and behavioral sciences,
too, and even traditionally humanistic areas. Mathematical eco-
nomics is now a central part of economics. The field of econometrics
has grown out of applications of probability and statistics in eco-
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nomics; and statistical techniques are important in anthropology,
sociology, political science, and psychology. Analysis of mathemati-
cal models for various social phenomena has been greatly aided by
computer simulation and data processing. The mathematical view-
point has even found new application in linguistics.

The above remarks refer to the mathematization of various
academic disciplines. Mathematics is also becoming an indispensable
tool in the world of government, industry, and business. The terms
"operations research" and "management science" are among those
describing the rapidly growing use of mathematical methods to
solve problems which arise in managing complicated systems involv-
ing the movement and allocation of goods and services.

Computers have extended the possibility of applying mathemati-
cal methods to a degree that would have seemed fantastic a short
time ago. Computer science, which deals with manifold problems
of building and utilizing computers, contains, among other things,
very important mathematical components.

THE NEED FOR MATHEMATICALLY TRAINED PEOPLE

The mathematization of our society brings with it an increasing
need for people able to understand and use mathematics. This need
manifests itself at various levels.

We need people who can teach mathematics in grade school in
a way that will not create a permanent psychological block against
mathematics in so many of our fellow citizens. We need people who
can understand a simple formula, read a graph, interpret a state-
ment about probability. Indeed, all citizens should have these
skills. We need people who are able to teach mathematics in high
school and cope with the necessarily changing curriculum. We need
people who know what computers can do, and also what they can-
not do. We need computer programmers who can work with under-
standing and efficiency. We need engineers, physicists, chemists,
geologists, astronomers, biologists, physicians, economists, sociol-
ogists, and psychologists who possess the mathematical tools used
today in their respective disciplines and who have the mathematical
literacy for learning the new skills that will be needed tomorrow.
Equally we need, though in smaller numbers of course, people in
these fields who are able to use mathematical tools creatively and
if necessary to modify existing mathematical methods. The numbers
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are hard to estimate, but it is clear that our society needs many more
mathematically literate and educated people than are available now.
For instance, computer programmers are already more numerous
than high school teachers of mathematics, and their numbers will
continue to increase.

These demands call for massive amounts of mathematical edu-
cation at all levels and so produce a mounting pressure on the
mathematical community. To do all this training calls for a larger
body of mathematics teachers. It is difficult to expand the supply
rapidly enough. Since teachers of intermediate-level mathematics
must themselves be trained by people of higher competence, these
pressures also quickly transmit themselves to the relatively small
community of mathematical scientists who do research. Many of the
needs of mathematics for support come from a need for balanced
growth meeting all these requirements.

Since we recognize a rising level of mathematical literacy as a
national objective, and since the community of mathematical sci-
entists bears the primary responsibility for attaining this objective,
our report cannot separate problems of research from problems of
education, including those of undergraduate education. (See both
Part III and the reportl,* of our Panel on Undergraduate Edu-
cation.)

APPLIED MATHEMATICAL SCIENCES

There are now four major areas in the mathematical sciences that
have particularly direct and important relationships with other
sciences and technologies: computer science, operations research,
statistics, and physical mathematics (classical applied mathematics).
We shall ordinarily refer to these as applied mathematical sciences.
For statistics and computer science there is a more accurate term,
partly mathematical sciences, which we shall sometimes use in
recognition of the individual character of these fields and their
strong extramathematical components.

These four major areas must each have special attention if we
are to come close to meeting national needs. At the same time,
there is a need for general support of applied mathematical sciences
in a way, r closely tied to particular applications, that will encour-

* Superscript numbers refer to the list of references at the end of the report.



Mathematics and Society 7

age creative interaction between mathematics, science, and tech-
nology, and among the various applied mathematical sciences
themselves.

The sciences and technologies associated with the computer
whether concerned with the nature of information and language,
the simulation of cognitive processes, the computer programs that
bring individual problems of all kinds to today's computing systems,
the software programs that convert cold hardware into a complex
computing system, or the hardware itselfface an intense and grow-
ing challenge.

The field sometimes laheled operations research is now growing
rapidly, though not so explosively as computer science. Its emphasis
today is on solving problems of allocation (routing problems and
scheduling problems are two major types) and on a broad class of
operational applications of probability (inventory management and
improving the service of queues and waiting lines, for example).
Again there are national needs both for a substantial body of people
who can apply the techniques effectively and for a leadership that
can innovate, reshape, and transform.

The field of statistics and data analysis is older and more firmly
established than the two just described. Yet there is still a shortage
of statisticians who can bring mathematical techniques and insights
to diverse applications. The development of computer techniques
is also having a strong impact on this field.

Physical mathematics, also called classical applied mathematics,
has evolved into various modern forms. In its traditional form, it
emphasized the mathematics essential to classical physics and the
established fields of engineering. Even more it emphasized the
evolution of the mathematical models under study. Nowadays, the
concepts of physics have been expanded to include the well-
established aspects of quantum mechanics and the theory of rela-
tivity. New developments apply to an ever greater variety of
subject-matter fields, and we must now look once again toward a
closer collaboration and mutual stimulation between mathematics
and all the other sciences.

Alongside the four main applied mathematical sciences there are
still newer areas of application where no self-identifying community
of mathematical scientists yet existsareas of central importance
to a variety of national objectives of great and growing concern.
The interplay between mathematics and sciences and the mutual
stimulation, cooperation, and transfer of ideas among applied
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mathematicians working in diverse areas all suggest that the applied
mathematical sciences, because of their common features, constitute
an area of study worthy of support in irs own right.

CORE MATHEMATICS

The foundation of the manifold mathematical activities just dis-
cussed is the central core of mathematicsthe traditional dis-
ciplines of logic, number theory, algebra, geometry, and analysis
that have been the domains of the so-called "pure mathematician."
The relationship between the core and applied areas is not one-
sided; many of the essential ideas and concepts in the central core
can be traced ultimately to problems arising outside of mathematics
itself. In the central core, mathematical ideas and techniques, no
matter what their origin, are analyzed, generalized, codified, and
transformed into tools of wide applicability.

In assessing the importance of the core, one should keep in mind
that there is always an interplay and exchange of ideas between
so-called "pure" mathematics, that is, mathematics pursued pri-
marily for intrinsic intellectual and aesthetic reasons, and so-called
"applied" mathematics, that is, mathematics consciously used as a
tool for understanding various aspects of nature.

Thus geometry, literally "earth measurement," originated as an
applied art, presumably in the Nile delta. The Greeks transformed
it into a pure deductive science, the prototype of pure mathematics.
Among the geometric objects studied by the Greeks were the curves
(ellipses, parabolas, hyperbolas) obtained by intersecting a cone
with a plane. These "conic sections," though they may have been
discovered by observing sundials, were then of interest to the pure
mathematicians alone. Today conic sections are working tools of
engineers, physicists, and astronomers. On the other hand, calculus,
which was developed by Newton as a mathematical tool for studying
the motions of physical bodies, is also the foundation of a large
part of modern "pure" mathematics.

The most spectacular uses of core mathematics are its direct
applications in science and technology. Remarkably enough, it is
impossible to predict which parts of mathematics will turn out to
be important in other fields. We have one guide: Widely useful
mathematics, for the most part, has proved to be also the kind that
mathematicians earlier characterized as "profound" or "beautiful."
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Important mathematical ideas have also been generated by people

who were not professional mathematicians.
The time lag of 2,000 years between the invention of the conic

sections and their applications in astronomy is, of course, not typi-

cal of recent developments. But the unexpected character of the
application is typical. The theory of Lie groups, for instance, was
developed for many years because of its intrinsic mathematical
interest. It seems now to be the natural way of describing sym-
metries in elementary-particle physics. The theory of analytic func-

tions of several complex variables has been undergoing a dramatic
development during the last two decades. The experts in this theory

were quite surprised to discover its usefulness in quantum field

theory.
We stress once more the totally unpredictable nature of such

applications. It is not the motivation of the mathematician who
creates a new theory that determines its future relevance to other

fields of knowledge. In particular, one should not be repelled by

the seemingly frivolous origins of many mathematical theories. A

puzzle about the seven bridges in Konigsberg led to the theory of

graphs, a basic mathematical tool of computer science, and in-

directly influenced the development of topology. A question raised

by a professional gambler led Pascal and Fermat to the theory of

probability.
But the application of a particular mathematical result or a

specific mathematical concept is not the only way in which core

mathematics is used. The total impact of mathematics on science
and technology is more difficult to document but probably even
more important. In all such applications of mathematics (model
building and mathematical reasoning about models, statistical
analysis, the use of computers), the investigators will use some of

the concepts, methods, and results developed by core mathe-
maticians. In a typical case, however, they will not find in the
storehouse of core mathematics the precise tools they need but will

rathcr have to develop those tools either alone or in cooperation

with mathematicians. How successful they will be depends to a
large extent on the general status of mathematics in the country, on

the level of mathematical knowledge among the people involved,

and on the number and quality of mathematically trained people.

All this depends ultimately on a healthy and vigorous develop-

ment within the central core of mathematics. We are convinced that

without this one cannot have efficient use of mathematical methods
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in science and technology, imaginative mathematization of new
fields, or spirited and effective teaching of mathematics at all levels.

The central core of mathematics is not static. It is now under-
going rapid and in many ways revolutionary development. Many old
and famous problems are being solved. The traditional boundaries
between different mathematical subfields are disappearing. New
unifying ideas are applied with great success. Though dynamic, the
central core of mathematics preserves historical continuity and un-
compromisingly high standards.

THE POSITION OF THE UNITED STATES
IN MATHEMATICS

At the beginning of this century, mathematical research activity in
this country was chiefly concentrated in a very few centers. Note-
worthy was the center at The University of Chicago under the
leadership of E. H. Moore, himself trained in Europe. Among
Moore's illustrious students were Oswald Veblen, G. D. Birkhoff,
and Leonard Dickson, each a major figure in mathematics. In the
interval between World Wars I and II, mathematics in the United
States became somewhat more important relative to world mathe-
matics.

Political developments in Europe in the 1930's led many Euro-
pean mathematicians to seek refuge in the United States and to
become active members of the American mathematical community.
This greatly stimulated mathematical research activity in this
country. The Institute for Advanced Study in Princeton became a
world center of mathematical research. Until after the Second
World War, however, financial support for mathematical activity
was extremely limited, and only a handful of undergraduates seri-
ously considered careers in research mathematics.

During World War II, the relevance of mathematics to the tech-
nological might of the nation and the critical shortage of mathe-
matically trained people became apparent. After the war, the
mathematical sciences became for the first time a concern of the
federal government, initially through the research departments of
defense agencies and then also through the National Science
Foundation. While the influx of federal money into the support
of mathematics was very modest compared with the funds poured
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into such expensive fields as high-energy physics, its effect on the
scientific life of the United States was stupendous.

Before World War II, the United States was a consumer of
mathematics and mathematical talent. Now the United States is
universally recognized as the leading producer of these. Moreover,
graduate education in mathematical sciences at major centers in
this country is far superior to that in all but two or three centers
in the rest of the world. Some more specific indicators of the posi-

tion of the United States in the mathematical world are given

below.

1. International congresses of mathematicians, meeting at roughly

four-year intervals, were inaugurated around the turn of the cen-
tury. The earliest such congress, in 1897 in Zurich, was attended by

only about 200, whereas at the most recent congress in 1966 in

Moscow, attendance was approximately 4,300. An invitation to a
mathematician to address an international congress evidences world-

wide recognition of his contributions to mathematical discovery at

the very highest level.
During the first four international congresses, those of 1897,

1900, 1904, and 1908, there were 26 invited addresses, of which only

one was by an American.* During the four most recent congresses,
those of 1954, 1958, 1962, and 1966, there were 274 invited ad-

dresses, of which 96, more than one third, were by U.S. mathe-

maticians.
2. The Fields Medals, for recognition of distinguished achieve-

ment by younger mathematicians anywhere in the world, were

established in 1932 by the late Professor J. C. Fields. Beginning
with the Oslo congress of 1936, two Fields Medals have been

awarded at each international congress of mathematicians, except
that most recently at the Moscow congress of 1966 four were
awarded. In all, 14 Fields Medals have been awarded, with the
distribution of medalists by country as follows: France, four; the
United States, four; England, two; Finland, Japan, Norway, and

Sweden, one each.
Of the 12 Fields Medalists since 1945, three have been Americans

trained in America: Paul Cohen (1966), John Milnor (1962), and
Stephen Smale (1966), Three others are long-time residents of the

*Simon Newcomb, who addressed the 1908 congress in Rome on the history and

present status of the theory of lunar motion. Participants at this congress num-

bered 535, of whom 16 were from the United States.
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United States and should now be considered to be members of the
U.S. mathematical community. Four or five others have been and
are frequent visitors to the United States, each having spent at
least one academic year here. Some of these are active collaborators
with various American mathematicians.

3. English has recently become the dominant language in world
mathematical circles. For instance, in the German journal, Mathe-
matische Anna len, the percentage of papers in English rose from
approximately 5 percent in the mid.-1930's to nearly 20 percent in
the mid-1950's, and to 55 percent in the mid-1960's.

4. In some representative issues of three of the leading mathe-
matical journals of Europe, Acta Mathematica (Sweden), Corn-
nzentarii Mathenzatici Helvetici (Switzerland), and Mathematische
Anna len (Germany), the following percentages of references to
papers in U.S. journals were found:

YEAR

Ada Comment. Math.
Math. Math. Hely. Ann.

1935 3% 12% 4%
1950 12% 24% 4%
1965 42% 25% 25%

5. There has been a significant increase in the number of foreign
mathematicians visiting in this country. Figures assembled by the
American Mathematical Society show that, in 1956, 73 foreign
mathematicians spent at least a semester at a U.S. university; in
1960, the number came to 144; in 1965 there were 199 such visitors.
In addition, other foreign mathematicians made briefer or more
casual visits or more lengthy stays outside universities.
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Recommendations

Our recommendations aim at enabling the community of mathe-
matical sciences to do all it can toward meeting national needs.
Even if all these recommendations are implemented, inherent limi-
tations on the rate of growth of research and teaching activities in
the mathematical sciences will make it impossible to meet all these
needs fully. It is therefore necessary to move as vigorously as possible
toward the recommended goals.*

The needs, outlined in the preceding chapter and throughout our
report, are an inevitable consequence of the growing complexity
of our society and its increasing dependence on a variety of science-
based technologies. These technologies, and the physical, biological,
and behavioral sciences that support them, are becoming more and
more mathematized. They utilize the ideas and techniques of core
mathematics and the methods and results of physical mathematics,
statistics, and other applied mathematical sciences. Most of these
technologies depend, often in a crucial way, on effective use of
electronic computers. Accordingly, society needs a rising level of

I

1 mathematical literacy and competence at all levels, a sufficient sup-
ply of mathematically trained people in many sciences and profes-
sions, and a sufficient number of qualified mathematical scientists.

* Added in proof: All our estimates and predictions about future numbers of
PhD's were formulated before the February 1968 issuance of new Selective Service
rules affecting graduate students. If these rules should result in a serious deple-
tion of the graduate student population, this would, of course, intensify the
predicted shortage of PhD's in the mathematical sciences.

13
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Research in the mathematical sciences serves a twofold social
function. The research workers create, develop, refine, and adapt
the mathematical tools needed now and in the future for the mani-
fold applications of mathematics and for the growth of the mathe-
matical sciences themselves. The same people, because of the insight
and stimulation acquired through active participation in research,
are the leaders of the whole educational effort of the mathematical
community. A thoughtful policy concerning support of research
has to be responsive to both aspects.

In these recommendations, as in the report as a whole, we have
treated research and education together. Research apprenticeship,
as carried out by postdoctoral fellows and research instructors and
by graduate students writing theses, is inseparable from research.
Education at the undergraduate and early graduate levels is so
intimately relatedon a long time scaleto research, that to con-
sider the continuing good of one without the other would be fool-
ish. From a national point of view, these are parts of one problem,
a problem that must be faced in its entirety.

Our recommendations, to be stated and discussed below, fall
under six main heads:

Improvement in the quality of education in the mathematical
sciences at the undergraduate level through expanded federal sup-
port, especially at key points. There is a growing shortage of college
teachers in the mathematical sciences.* Faculty improvement is
essential; and specific kinds of support of early graduate work can
avoid losses, both of people and of opportunities for sound train-
ing. (See Recommendations 14 through 17 and the report' of our
Panel on Undergraduate Education.)

Maintenance of momentum in research, research apprenticeship,
and graduate education. This will require continuing growth in
federal support of these activities. Even if this is provided, the
mathematical community will not grow fast enough to meet
national needs. Accordingly, recent slackening in federal supportt
are a cause of deep concern to the mathematical community and
should, we feel, be a matter of general concern. (See Recommenda-
tions 1 and 11 through 13.)

Support for the explosive growth of computer science, especially

* This is documented and discussed in Chapter 7 under Quality and Distribution
of Mathematical-Science Faculty (see page 127) as well as in the reportl of our
Panel on Undergraduate Education.
t See reference 2, Volume XVI, Appendix C.
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as a field of research in its own right. (See Recommendations 2, 3,

and 19.)
Support of research and education in the applied nzathematical

sciences as such, and not merely in connection with either mathe-
matics or the particular sciences that use mathematics. Such sup-
port will not be expensive, but a failure to seize today's oppor-
tunity would be costly. (See Recommendations 4, 18, 21, and 22.)

Agencies and mechanisms for federal support of research and
research apprenticeship in the mathematical sciences. (See Recom-
mendations 5 through 10.)

A continuing program of information-gathering about research
and education in the mathematical sciences. (See Recommendation
20.)

RESEARCH

The encouragement and support that the research effort in the
mathematical sciences has received during the last 20 years in the
United States have made this effort eminently successful by any
test. The record shows numerous and great intellectual achieve-
ments as well as substantial material and social benefits resulting
directly from the endeavors thus set in motion. The United States
now holds a position of leadership in all mathematical sciences.
To prepare for future needs, the momentum of research should be
preserved.

Growth and Level
Federal support of research and research apprenticeship in the
mathematical sciences has developed and nurtured a process of
growth limited more by natural abilities and by individual prefer-
ences among fields than by available funds. Even if this momentum
continues, the mathematical community will not grow fast enough
to meet national needs.

1. We recommend that, as a national policy, federal support for
basic research and research apprenticeship in the mathematical
sciences and in each of their major subdivisionsincluding the
areas of core mathematicscontinue to grow in proportion to the
number of appropriately qualified investigators and graduate
students.

i
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DISCUSSION An analysis of the present level of support for research
in the mathematical sciences is presented in Chapter 10. An extraor-
dinary development of mathematical competence and prestige has
accompanied modest expenditures: a relatively small (approxi-
mately $15 million in 1966) annual investment by the National
Science Foundation in academic mathematical research, a larger
total investment in basic mathematical research at universities
(approximately $35 million in 1966) by all federal agencies,* the
much larger government investment in both basic and applied
research in the mathematical sciences (approximately $125 million
in 1966). Vastly larger investments (e.g., $2 billion estimated for
the purchase and utilization of computers by the government in
1967) are importantly affected in their effective use by research in
the mathematical sciences.

The ratio of the national investment in basic research to the
investment in fields of application is so small, and the benefits
from basic research so large, that the goal of programs for the
support of basic mathematical research, in core mathematics and
in the applied mathematical sciences, should be limited only by the
availability of high-quality investigators.

We estimate that at present about one out of every six PhD's in
the mathematical sciences is consistently active in research. Over
the past five years the number of PhD's has been growing at an
average rate of 18 percent per year; a rate of at least 10 percent is
projected for the next five years (see Chapter 8). We believe that
throughout the next decade the increase of qualified investigatorsin the mathematical sciences will lag substantially behind society's
need.

We consider that the level and rate of growth of support was
adequate a few years ago--at least within the core areas. (In the
other mathematical sciences there has been a shortage of funds for
basic research not tied to specific applications. In computer science
the support for unrestricted basic research in the software area has
been quite inadequate.) At present the failure of current and pro-
jected budgets to provide expansion adequate to take account of
larger numbers of qualified mathematicians, advancing costs of
research, and advancing overhead rates is a matter of serious con-
cern. The above recommendation can be thought of as urging the

*For 1966 the S35 million spent in basic academic mathematical research was2.4 percent of the total federal research expenditures in that year.
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9. We recommend increased exploitation of departmental grants
to supplement the traditional project grants and the recently estab-
lished university science development awards.

DISCUSSION The departmental grant provides a mechanism for
support of the mathematical sciences with desirable flexibility in
meeting the diverse needs and capacities for academic mathematical
research. The university science development grants have proved
useful for the support of research and graduate educational activ-
ities that correlate well with those of other departments. In the
mathematical sciences these have usually tended to be better suited
to the needs of computing, statistics, and traditional applied mathe-
matics than to those of core mathematics. The departmental grants
should extend such opportunities to core mathematics, as well as
permitting other areas of the mathematical sciences to develop
their identities and programs.*

Peer Evaluation
Federal support of basic academic research has relied on judgment
by qualified investigators in the evaluation of proposals for research
grants as well as in processing applications for fellowships. This
practice is doubdess one reason why such support has worked as
well as it has.

10. We recommend that the principle of peer judgment continue
to be used with respect to all forms of support for basic academic
research and research education. An essential part of peer judgment
should be representation of specialized areas, especially applied
mathematical sciences, on evaluation groups that are likely to deal
with applications from these areas.

DISCUSSION The purpose of such representation is to ensure that
proposals from an area of specialization receive a fair evaluation by
people familiar with the aims and standards of the field. (The
range of judgment required in peer evaluation is indicated by the

* We are aware of the twin dangers of "gimmickitis" and "hit and run" financing
so eloquently described by George Fake ["Basic Research and Financial Crisis in
the Universities," Science, 157, 517-520 (Aug. 4, 1967)]. We hope that pro-
grams of departmental grants (and indeed all grants) will be so administered as
to minimize these dangers.
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occurrence of both physical mathematics and mathematical logic
among the mathematical sciences.) Efforts in this direction arc
being made at present, yet it is important to adhere to the principle
that justice not only be done but also be seen to be done.

EDUCATION

Research Apprenticeship
We believe, as already stated, that for the foreseeable future this
country will need every qualified investigator it can educate in the
mathematical sciences. An even more critical need is for college
teachers. Our estimate is that 8,000 new teachers of mathematical
sciences will be needed in the four-year colleges and universities by
1971 (see Chapter 7). These two needs cannot be discussed sepa-
rately, since at this level of education it is impossible to foresee
which students will eventually do research, which will teach, and
which will do both. Therefore, we consider it to be in the national
interest that every student capable of and interested in earning a
PhD degree in the mathematical sciences should have available to
him the support required for achieving this goal.

11. We recommend that federal support, combining research
assistantships, fellowships, and traineeships, provide support for at
least one third of the expanding full-time graduate student popu-
lation in the mathematical sciences, and that the number of re-
search assistantships under grants and contracts be not less than
the number of senior investigators supported.

DISCUSSION In the academic year 1965-1966, about 28 percent of
the roughly 9,400 full-time graduate students in the mathematical
sciences received some form of federal support: 13 percent through
fellowships, 7 percent through traineeships, and 8 percent through
research assistantships (see Table 16, page 181). The number of
research assistantships probably is now about three quarters of the
number of senior investigators working on grants and contracts.
Computer science, applied mathematics, and statistics support a
higher than average proportion of their students through research
assistantships. Cow mathematics, on the other hand, employs a
higher proportion of graduate students as teaching assistants; 38
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percent of all graduate students in the mathematical sciences are
employed as teaching assistants.

We believe that there are cogent reasons for increasing the num-
ber of research assistantships in all the mathematical sciences. Such
assistantships serve several useful purposes. They bring graduate
students into direct and immediate contact with active mathe-
maticians and introduce them, at an early stage, to the spirit and
techniques of independent work. At the same time, most mature
investigators find such contact with young colleagues stimulating
and useful for their own work. It should be noted that in mathe-
matics a research assistant is almost always an apprentice and a
junior participant in a joint intellectual undertaking, rather than
a mere agent performing tasks useful for the research of his prin-
cipal. It hardly ever happens that the research assistant is prevented
or discouraged from following his own scientific interests. (As a
matter of fact, PhD candidates supported by fellowships and
traineeships often act, in effect, as research assistants.) Curtailing
the number of research assistantships, unfortunately, has become
almost a standard response to budgetary limitations.

This committee believes that practically all PhD candidates
should do some teaching sometime during their graduate work.
We deplore the fact, however, that at present some graduate stu-
dents teach throughout their graduate careers, while others do no
teaching at all. We suggest that universities, in cooperation with
relevant government agencies, strive toward a system in which every
graduate student acquires teaching experience during some years in
graduate school (whether by teaching a section, leading recitation
groups, or doing informal instruction) and in which no student's
progress toward receiving the PhD degree is impeded by an exces-
sive teaching load.

* * *

Ordinarily, a student in the mathematical sciences receives his
doctorate before he has completed an adequate professional appren-
ticeship. Furthermore, students who plan careers that involve the
applications of mathematics in broad areas have not ordinarily
acquired an adequate acquaintance with the attitudes, objectives,
and foundations of some of the relevant sciences. Clearly, then, we
must recognize the need for postdoctoral educational avenues
toward professional maturity. These include appointments both for
pure research and for research and teaching combined.
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12. We reconzmend the continuation and, wherever possible,
expansion of existing opportunities for postdoctoral study.

in addition, we recommend a new program of postdoctoral re-
search instructorships (50 each year for a two-year term) whose
holders will teach at smaller colleges and conduct research at nearby
centers.

DISCUSSION It is the view of this committee that the number of
postdoctoral research appointments should be substantially ex-
panded. For many capable young PhD's a postdoctoral position that
involves both teaching and research can be very beneficial. Such
young PhD's should also be encouraged to seek positions in a
broader variety of colleges and universities. The second part of the
above recommendation, coming from our Panel on Undergraduate
Education, is one of several plans suggested to the Committee for
achieving this end. We feel that while other proposals merit study,
this particular one calls for immediate implementation.

At present we are making a most ineffective use of the intellectual
potential of women. (See the discussion in the reporti of our Panel
on Undergraduate Education.)

13. We recommend a special program for part-time graduate
fellowships, available to women who have completed their master's
degrees or met equivalent requirements.

DISCUSSION A much smaller proportion of women than of men go
beyond the master's degree to the PhD degree in the mathematical
sciences. Because of social pressures and family obligations, it is
generally much harder for a woman than for a man to qualify for
support, which usually demands full-time graduate study. A sig-
nificant increase in the number of mathematical scientists with
advanced training could be made if the potential of mathematically
talented women were used more fully. The suggested program is a
modest step in this direction.

The Committee also suggests that universities and state author-
ides abolish out-dated nepotism rules, which often prevent qualified
women mathematicians from seeking academic employment, and
that part-time academic employment for women be made more
widely available.
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Early Graduate Education

Today, federal support of graduate students goes primarily to candi-
dates for the PhD degree; we feel that this support should be ex-
tended to other graduate students.

14. We recommend an experimental program for federal support
of graduate students in qualified institutions that do not offer a
PhD degree in mathematical sciences.

DISCUSSION By 1970, two out of three first-year graduate students
will be in institutions not granting the PhD degree, if present
trends continue. Many of these will receive their doctorates else-
where. It is important that institutions should be encouraged to
strengthen their programs in early graduate education, without
prematurely embarking on PhD programs themselves.

Also, colleges, and especially the growing junior colleges, make
extensive use of holders of the master's degree as faculty members.
Many with master's level training are employed in industry as well.

* * *

We find that a substantial preventable loss of mathematical talent
occurs between college and graduate school because of inadequate
undergraduate preparation.

15. We recommend special fellowships, or forgivable loans, for
talented college graduates with weak or inadequate preparation in
the mathematical sciences, to enable them to begin graduate work.

We recommend that graduate departments in the mathematical
sciences be encouraged to make special efforts to admit talented
college graduates with weak or inadequate preparation in the
mathematical sciences and to provide suitable educational programs
for such students after their admission.

DISCUSSION The faculties of many colleges are too small or too
poorly prepared to offer their students adequate preparation for
modern graduate work in the mathematical sciences. (These include
most of the approximately 600 colleges that have at most one
mathematics teacher with a PhD degree.) A graduate of such a
college is likely to find difficulty in obtaining admission to a grad-
uate school in the mathematical sciences. And, even if admitted, he

2

,

,
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is apt to have serious difficulty with the normal program planned
for first-year graduate students. Such a student needs a chance to
move into a college or university through special programs planned
to bring his background up to the normal standard for entering
graduate students. Such programs for talented students with weak
preparation would be especially suitable for colleges or universities
having strong master's programs in mathematical sciences, but no
PhD programs.

Faculty Improvement
In recent years, universities and colleges have been beset by the
challenges of enrollment increases and curriculum revisions, both
undergraduate and graduate. For the mathematical sciences these
challenges have been underlined by an extraordinary growth in the
number of student majors, by rapid and extensive developments in
subject matter, and by increases in numbers of majors in other
fields who elect courses in the mathematical sciences, sometimes for
cultural reasons but more often for their usefulness in those other
fields (see discussions of The Increase in Mathematical Majors,
page 122; Total Enrollments in the Mathematical Sciences, page 124;
and The College Teacher, page 147).

If these challenges are even partially to be met, it is imperative
that, along with educating new college teachers of the mathematical
sciences, special efforts be made to upgrade and update present
college faculties, with special emphasis on current developments in
the mathematical sciences and their penetration into new areas of
application.

16. We recommend that the National Science Foundation Science
Faculty Fellowship Program be gradually expanded to provide by
1971 at least 150 awards in the mathematical sciencesroughly
double the number in recent years.

DISCUSSION Our Panel on Undergraduate Education has estimated
that a program of this expanded size would offer opportunity for
awards to approximately one quarter of the doctorate-holding fac-
ulty and one half of the nondoctorate-holding factulty at least once
in their teaching careers. Clearly this is a conservative goal; it would
be desirable to exceed it if conditions permit.
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maintenance of at least a natural rate of growth throughout the
mathematical sciences.

The Special Situation of Computer Science
National needs and developments in contemporary technology
require the stimulation of higher than natural rates of progress in
some areas of the mathematical sciences. Of particular urgency at
this time are the requirements of computer science.

2. We recommend that at the national level special priority be
given to support of the expansion of research and graduate study
in computer science. Appropriate actions would include: special
support for developing and updating courses, support for research
during the academic year when needed, grants to departments to
cover costs of computer usage in research, special attention to needs
for space, and expansion of numbers of research assistantships and
traineeships to stretch the capacity of all departments of high
quality.

DISCUSSION The proliferation of high-speed electronic data-process-
ing equipment, combined with the rapidly expanding art of its use,
constitutes one of the newest and most dynamic forces affecting the
mathematical sciences. There is a critical shortage of research
leaders in computer science, and urgent steps are required to over-
come it as fast as possible. Electronic computers have evolved
so rapidly that in many areas they have become an integral part of
operations before there has been time for the research needed to
determine the best, or even fairly good, ways of using them. The
vast expenditures for computing in the operations of the federal
government alone mean that even modest improvements achievable
from research at relatively low cost will almost surely pay off in large
cost reductions and improvements in service within a very few
years. Despite the large sums available to finance computing service
on campus, the money available for research in computer science
has been, with the exception of a few spectacular projects, seriously
inadequate.

The role of computers in higher education across the board has
recently been studied in the Pierce report3 of the President's Sci.
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ence Advisory Committee. The detailed impact of projections made
by this and similar studies on the requirements for research and
education in computer science itself is, however, most inadequately
understood. This matter obviously demands urgent attention.

3. We recommend a thorough study of the implications for
research and advanced education in computer science of an ade-
quate implementation of the recommendations of the Pierce
report.3

Basic Research in Applied Mathematics
Research of sufficiently high quality is wisely supported as research
for its own sake. In at least two areas of applied mathematics
physical mathematics (sometimes called classical applied mathe-
matics) and the mathematics underlying operations research and
modern economicsthere are growing communities of mathemati-
cal scientists whose efforts meet this criterion. Their basic research
should thus be supported partly for its own sake and as a field in
its own right, rather than solely because of its immediately per-
ceived contributions to particular fields of application.

4. We recommend that federal support for research and research
apprenticeship in high-quality basic applied mathematics be given
on the basis of intellectual worth (recognizing, of course, ihe over-
all importance of progress in applied mathematics to many sciences).

DISCUSSION There is a significant distinction between such applied
mathematical sciences as physical mathematics and the mathe-
matics underlying 'operations research and such partly mathemati-
cal sciences as statistics and computer science. Mathematics is
applied in all these disciplines, as it is in so many others. The partly
mathematical sciences gain their identityand their only partly
mathematical naturefrom the existence of problems, not initially
mathematical, that run broadly through most fields of science and
technology. The applied mathematical sciences, like physical mathe-
matics and operations research, have had the effect of uniting
mathematics with specific areas of applicationan effect that will
not disappear. However, they have not developed a sufficiently
strong identity of their own. Much can be gained from the develop-
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ment of such identities, the foundations for which already exist in
intellectually worthwhile xesearch of high quality. Recent work,
characterized by the evolution of ever more appropriate mathe-
matical models, together with the evolution of mathematical tech-
niques,* display dearly the comprehensive nature of the discipline
of applied mathematics. Support of such work for its own sake is
now clearly justified and need not interfere with other work in
these areas supported because of its more immediate usefulness.

Sources of Support

The major federal support of research and higher education in the
mathematical sciences comes from a variety of agencies, the most
important being the National Science Foundation and certain of
the mission-oriented agencies, as indicated in more detail in
Chapters 10 and 11. We believe that activities in the mathematical
sciences will continue to be relevant to the tasks of all these agencies,
and that all of them should continue to share in the future support
of these sciences.

5. We recommend a level of growth that will enable the National
Science Foundation to continue effectively in its central role in
support of basic research and higher education in the mathematical
sciences.

DISCUSSION The National Science Foundation is the agency of the
federal government whose direct mission is the promotion and
support of basic research and education in the sciences. In carrying
out this mission it has evolved a versatile and highly effective array
of programs. A vital ingredient in the success of these programs has
been the system of peer-evaluation for ensuring high quality in the
research and educational activities supported.

The National Science Foundation has been a very important
source of support for the mathematical sciences, furnishing in
recent years close to one third of the total federal support of mathe-
matical activities in basic research and approximately half of the
federal support specifically allotted to mathematical activities in
higher education. As the sum total of our discussion in various parts

*In studies, for example, of the dynamics of the ocean, the structure of galaxies,
the physics of low-density gases, and the optimal use of water-supply systems.
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of the present report indicates, we feel that the whole range of
National Science Foundation programs in the mathematical sci-
ences has been valuable and well conceived. We urge a natural rate
of growth in most of these programs and a more rapid growth in
several. We also suggest a few new programs.

* * *

Several mission-oriented agencies of the government rely on ad-
vanced mathematical techniques in accomplishing their tasks. For
such agencies it is important to maintain close contact with con-
temporary activity and competence in the mathematical sciences.

6. We recommend that mission-oriented agencies that expect to
derive significant benefits from the use of mathematical sciences
continue and expand their partnership with the community of
mathematicians by:

(a) participating in the sponsorship, not only of research that
promises predictable returns in applications, but also of basic inves-
tigations that enlarge the intellectual foundations of the field, and

(b) evolving organized plans for bringing their unsolved scientific
problems to the attention of the mathematical-sciences community
and for providing the opportunity to qualified research mathe-
maticians to further, at times and in the depth of their choosing,
the mathematization of major realms of scientific and technical
effort of national concern.

DISCUSSION The past record of sponsorship of mathematics rcsearch
by the mission-oriented agencies shows its effectiveness. The pos-
sibility of rapid adaptation and follow-through in connection with
newly developed techniques of mathematical analysis has greatly
assisted the mission-oriented agencies; and familiarity with some of
the difficult scientific and technological obstacles that must be
overcome has been instrumental in stimulating fruitful funda-
mental research endeavors.

Time may be lost and effort wasted in the achievement of tech-
nology-dependent objectives, and delays may occur in the progress
of mathematical techniques for the advancement of other sciences,
if we fail to develop and to maintain continuing channels of com-
munication between the mathematicians and the heavy users of
mathematical sciences. Thus we believe that it is vital to continue,
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and to strengthen where it is already established this pattern of
cooperation between mission-oriented agencies and the mathemati-
cal community, and to extend it further as our national commit-
ments venture into areas in which the role played by science and
technology becomes ever more intricate. Areas of possible expansion
include housing and urban development, transportation: manage-
ment of this country's natural resources, and the guidance of its
educational efforts.

* * *

Of the federally sponsored research in the mathematical sciences,
reported as basic by the supporting agencies, 60 percent is con-
ducted in academic institutions. Of this fraction, a litde less than
one half is supported by the National Science Foundation. Other
agencies, mainly the Department of Defense, the Atomic Energy
Commission, and the National Aeronautics and Space Administra-
tion, account for the remainder of the university research and for the
bulk of the basic work conducted under government sponsorship at
nonacademic establishments, amounting to just under three fourths
of the total federal commitment to basic research in the mathe-
matical sciences.

7. We recommend that the Department of Defense, the Atomic
Energy Commission, the National Aeronautics and Space Admin-
istration, and the National Institutes of Health continue p1ograms
for the sponsorship of basic research in the mathematical sciences,
and especially in physical and engineering mathematics, statistics,
computer science, and operations research and management science.
This support should increase at rates that will enable these agencies
to share responsibly in maintaining at least the natural growth
rate and that provide for higher rates of expansion in meas with
long-term relevance to the agency's mission.

DISCUSSION At issue here for the most part is basic research, con-
ducted at universities, government laboratories, and industrial
establishments in the areas of applied mathematics and statistics,
computer science, and operations research and management science.
The Department of Defense has the longest history of cooperation
with the community of mathematics, and there can be no question
that over the years defense technology has benefited in many and
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vital ways therefrom (e.g., in computer and communications tech-
mlogy: quality control and life testing, and programming of mas-
sive supply operations).

The agencies in question bear an important share in the steward-
ship of one of this country's vital resourcesits research potential
in the mathematical sciences. Moreover, the multiple character of
the support has itself contributed greatly to the vigorous state of
American mathematics.

Forms of Support*
Since World War II, the overwhelming bulk of federal support of
research in mathematical sciences has been support of individual
or group projects. Two decades of experience have demonstrated
the effectiveness of the project system.

8. We recommend that federal agencies sponsoring basic academic
research in the mathematical sciences continue to use the project
system as the primary mechanism for support.

DISCUSSION The project system has proved compatible with almost
every pattern of departmental university organization; it has also
proved flexible in adjustment to the tasks required and CZective in
linking the problems of sponsoring agencies with relevant contem-
porary mathematical research. A more detailed discussion and
evaluation of the project system is given in Chapter 10.

We believe, however, that project grants and contracts are not
always best suited for fulfilling several necessary tasks: assisting
departments of quality and promise to become truly outstanding,
developing new centers of leadership in the applied mathematical
sciences, and providing centers of research and graduate education
in geographical regions so far deprived of them.

*This committee is aware that authoritative voices have proposed very radical
revisions of the whole federal system for supporting academic research and uni-
versity education, abandoning the present forms of support in favor of direct
federal subsidy to universities. We feel that a discussion of this problem lies out-
side our competence. The fact that we do not mention these possibilities in our
report, howcver, should not be taken as evidence that we oppose them. It is self-
evident that in any thorough discussion of such radical changes the special prob-
lems of the mathematical sciences would have to be taken into account.



Recommendations 29

The problem of upgrading and updating college faculty in the
mathematical sciences is too massive to be fully met by academic-

year programs like the National Science Foundation Science Faculty
Fellowship Program. This is especially true of further faculty train-
ing in certain areas of rapidly increasing demand, such as linear
algebra, probability and statistics, computer science, and applica-
tions of mathematics in the physical, biological, and social sciences.

17. We recommend the expansion of programs of summer insti-

tutes for college teachers, and especially programs in areas of increas-
ing demand where additional faculty competence is most needed.

DISCUSSION This too is one of the recommendations of our Panel

on Undergraduate Education. As the Panel points out, the over-all
shortage of college teachers of mathematics is aggravated by their
insufficient familiarity with special subject-matter areas, most

notably in the fields named under Recommendation 16 above. See
the discussion of The College Teacher on page 147, references 4 and
5, and the report' of our Panel on Undergraduate Education.

Undergraduate Education in Applied
Mathematical Sciences
Applied mathematics as a science and an art with its own objectives,
attitudes, and skills has lagged badly. Only a relatively few pioneers
who have seen the need and the opportunity have striven to acquire
and to teach a comprehensive view of the manner in which mathe-
matics is applied to many fields of science.

18. We recommend that tile federal government give active sup-
port to the development generally, but especially at the under-
graduate level, of experimental educational programs that stress
the common features of the applications of mathematics.

DISCUSSION Much could be gained if it were possible to develop not
only the individual identities associated with different fields of
application but also a single identity that would emphasize in
breadth the application of mathematics in the physical sciences, in
the biological and behavioral sciences, in engineering and medicine,
and in the partly mathematical sciences. We do not yet know how
effectively this can be done. Experimentation is needed. Such ex-
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perimentation deserves, and will require, support from both the
universities and the federal government.

Efforts of this comprehensive character are especially important
at the undergraduate level where they can provide (a) the educa-
tional foundations for graduate work and subsequently a career in
the applied mathematical sciences, (b) the augmentation, both in
substance and perspective, of curricula in more specialized dis-
ciplines, and (c) an undergraduate program offering an additional
route to graduate study in any of the particular, more specialized
mathematical sciences or in the partly mathematical sciences.

At present, in many universities and colleges, students receive an
excellent preparation for graduate work in core mathematics, but
a traditional mathematics major program may not be the only way
or the best way of attracting and motivating an undergraduate for
further work in the partly mathematical sciences.

19. We recommend that special attention and, where needed,
federal support be given to undergraduate programs in the partly
mathematic-:1 sciences. This would include (a) more active par-
ticipation of existing statistics departments in undergraduate edu-
cation, (b) development of undergraduate programs in operations
research and management science, and (c) development of more
undergraduate programs in computer science.

DISCUSSION In statistics, there is a shortage of graduate students;
one reason for this is the lack of undergraduate programs in the
field. Since there is a fair number of separate statistics departments,
the remedy and the decision lie in their hands.

In computer science the rate of founding of new graduate depart-
ments is already straining the supply of qualified faculty. On the
undergraduate level, however, much could be done by using exist-
ing faculty in other departments or by drawing part-time faculty
from local industry. Federal support may be needed (a) for the
preparation and updating of specialized courses and (b) for student
computer use.

The augmentations of undergraduate education called for in
Recommendations 18 and 19 must be consistent with the broad
general goals of education at this level. In consideration of this,
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many institutions will find that increased flexibility arid increased

breadth in existing programs, rather than the introduction of new

majors, will meet the need.

SURVEYS AND STUDIES

There are important issues that cannot be resolved at this time
because they require further investigations. Although these issues

are widely disparate, we present them together here (see also

Recommendation 3).

Continuing Survey Activities in the
Mathematical Sciences
On many occasions the Committee on Support of Research in the
Mathematical Sciences (cosmms) and the Survey Committee of the
Conference Board of the Mathematical Sciences (cams) have found

themselves balked by unavailability of reliable data of the most
basic kind. The multiplicity of agency administrative and fiscal
arrangements and the widely differing policies and practices used
in ciassifying research and in accounting for manpower strengths
and requirements in the mathematical sciences have made it hard

to develop reliable data.

20. We recommend that surveys of activities in research and
education in the mathematical sciences, such as those that have
supported the work of this committee, be put on a continuing basis,
perhaps under the leadership of the Conference Board of the Mathe-

matical Sciences.

Mathematical Sciences in Government Research and
Development Establishments
Examples from major industries, notably the Bell Telephone
Laboratories and the Boeing Aircraft Company, have shown how

the imaginative employment of mathematical techniques con-

tributes to the development of new capabilities based on sophisti-
cated technology. In the early 1950's, the Mathematics Division of
the National Bureau of Standards very effectively served this role

:

-

!
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for the U.S. Government. As its needs for mathematical techniques
have grown, however, the government has come increasingly to rely
on outside contractors rather than on the expansion of mathemati-
cal resources within its own research and development establish-
ments.

21. We recommend that a broadly qualified ad hoc group be con-
vened to study the desirability and feasibility of creating research
units within one or a few of the government's key research and
development establishments whose mission would be the develop-
ment and imaginative application of mathematical-science results
and techniques in contexts pertinent to federal efforts.

New National Goals
Growing up alongside the national programs that call for physics
and heavy engineering, there are now programs that, with increasing
frequency, receive at least equal priority and that are designed to
ameliorate the lives of individuals or to develop beneficial social
organizations, and hence involve the problems of environment and
people. The use of mathematical techniques in these contexts can
be very substantial and must be expected to depend largely on the
applications that are made of electronic data-processing facilities as
well as the constructions of systems analysis, operations research,
and the management sciences.

22. We recommend that recently established agencies of the fed-
eral government, whose missions strongly depend on science and
technology, cooperate with the National Science Foundation in a
thorough review of those activities in the mathematical sciences
that deserve attention in the context of their missions.

IMPLICATIONS FOR PROGRAM AND
RESOURCES PLANNING

Most of the recommendations of the previous sections make budget-
ing and policy demands on the conduct of the federally sponsored
research and advanced education programs in the mathematical
sciences. Relevant information and data have been developed
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throughout the report. For the convenience of program planners
and managers, the key elements are summarized here in direct
juxtaposition with our key recommendations.

The baseline for our projections is constituted by the allocations
of fiscal year 1966, the last complete year for which data became
available while the present survey was in progress. For that year,
the agencies of the federal government reported research and devel-

opment obligations totaling $125 million for research in the mathe-
matical sciences. Of this amount a conservative estimate identifies
at least $45 million as having been spent on basic research. The
remainder of $80 million has served to fund applied research
directly supporting the missions of the sponsoring agencies, as well
as a few major projectsprincipally under the aegis of the Ad-
vanced Research Projects Agency of the Department of Defense
in which it proved impossible to separate basic from applied com-
ponents. No long-term rates of growth have been projected for this
remainder item; its future level will be established by the needs
and opportunities as they are identified by the individual agencies.

Returning to the allocation of $45 million to basic research in
1966, we have estimated that about $35 million of this went for the
support of academic research, leaving a remainder of roughly $10
million for the conduct of basic mathematical-sciences research
under programs administered at the local level by the major fed-
erally sponsored research and development centers. Again, no
attempt has been made to project the growth of this fraction over
the next few years. Within the $35 million for academic research,
we have identified slightly over $20 million as allocated to project
support, the remainder accounting for other than project-type sup-
port, such as portions of interdisciplinary efforts, departmental and
institutional grants, and conference activities.

In addition to the $125 million in research and development
obligations in base year 1966, approximately $10 million of other
federal funds were allocated in that year to the support of graduate
study in the mathematical sciences and approximately 85 million
to programs of further faculty training and various activities in
undergraduate educational improvement in these fields. Our recom-
mendations dealing with levels and forms of support are addressed

principally to the budget for academic research ($35 million in
1966) and for these closely related items in higher education ($15
million in 1966).
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The Staffing of the Colleges; Research and
Research Education
The current level and rate of growth of the demand for profes-
sional competence in the mathematical sciences to conduct research
and research education has been estimated in connection with:

(a) Projected requirements for the teaching of mathematical
sciences at the college level;

(b) The funding of applied research in the mathematical sciences
by the mission-oriented agencies of the federal government;

(c) Manpower demands in certain of the applied mathematical
sciences, especially computer .-'ence and those intervening in the
field of operations research.

Conservative estimates anticipate a need of some 8,000 additional
full-time college faculty members by the academic year 1970-1971
over the 10,750 in service in 1965-1966. According to these estimates
only about 41 percent of these new faculty members will have
doctorates, even on the optimistic assumption that in the interven-
ing five years no less than 70 percent of the new PhD's will be teach-
ing mathematical sciences at universities and four-year colleges.
This would represent a lowering of quality in the sense that cur-
rently 46 percent of those teaching the mathematical sciences in
universities and four-year colleges have PhD degrees in the mathe-
matical sciences. (Another 6 percent have PhD degrees in other
fields, primarily education.)

Government support of applied research in the mathematical
sciences has grown at an average rate of 51 percent per year during
the period 1960 to 1966, largely because of rapidly increasing
commitments in computer research and development and in oper-
ations research. Having now reached a level of about 580 million
per year, this support shows a slackening growth rate, which is,
however, still running well ahead of the annual growth rate for
support of basic research. Correspondingly, growing manpower de-
mands in the applied mathematical sciences indicate that current
shortages will become even more severe in the next few yew's.

Thus, shortages of mathematical manpower, for both teaching
and research, are increasing. These are occurring in spite of a rela-
tively high rate of growth in PhD production during recent years
averaging 18 percent per year over the period 1960-1965and in



Recommendations 35

spite of the fact that not many capable graduate students appear
to have been lost because of lack of support during that period.

As a consequence, we have had to conclude that even optimal
planning and management of sponsored programs in research and
professional education will not build up the mathematical-sciences
community fast enough to meet national needs. It is therefore im-
portant that economic deterrents not retard the replenishment of

the group on which the 'responsibility for innovation, research
training, and college education devolves. Hence, our recommenda-
tions (Recommendations 1, 8, 9, and 11) call for an expansion in
the support of basic academic research and research apprenticeship
in the mathematical sciences at least at a rate that will not inter-
pose economic barriers to the achievement of competence in re-
search and research education.

In the absence of much of the necessary information, only rela-
tively crude planning factors cm be established. Taking Recom-
mendations 1 and 11 together because they involve common ele-
ments, we estimate that:

(a) In the $20 million worth of project research, a total of
approximately 920 tenure research investigators (TRI) participated,

so that the average expenditure of such funds (investigators'

salaries, visitors, research associates and assistants, secretarial sup-

port, publication, overhead) amounted to around $22,000 per TRI.
(h) One out of six PhD's in the mathematical sciences ends up

doing research found worthy of support. Allowing for the elapse
of approximately five years between receipt of the doctorate and
the acquisition of tenure, the figures on earned doctorates provide
an estimate of approximately 1,400 for the group of TRI's by 1971.

(c) The planning factor of $22,000 per TRI will grow, because of

(i) the increasing cost of research, which is certainly no less than
4 percent per year, (ii) the cost of growing requirements for machine
computing, which cannot be reliably estimated at present but, in
particular instances, reach magnitudes that dwarf all other costs,
and, finally, (iii) the increase in the number of research assistants

per TRI called for by Recommendation 11. We arrive, conservatively,

at a minimum of $29,000 per nu by 1971.*
(d) Comparable growth should be provided in the nonproject

forms of academic research support, under the assumption that no

In computer science itself the corresponding average annual cost is estimated
in the section on Computer Science (page 205) to be approximately $60,000 per

TRI.
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radical change is made in the balance with project support (Recom-
mendation 9).

(e) Graduate-student enrollment will grow from its 1966 level
of 9,400 to approximately 18,400 by 1971. With 1,300 covered by re-
search assistantships [see (b) above], a total of 4,800 will have to be
accommodated by fellowship and traineeship programs if one third
of them are to be given research apprenticeship support, in accord-
ance with Recommendation 11. The corresponding figure for 1966
is 1,834, and the at least 4 percent per year increase in cost of re-
search also affects the rate per research apprentice in these programs.

Total costs can now be projected for 1971 and converted into an
annual percent rate of growth for the period 1966-1971. Specifically,
there would be $66 million for academic research, of which at least
$38 million would be in the form of project research, and another
$30 million in fellowship and traineeship support. The equivalent
annual growth rates turn out to be 14 percent for research, 24
percent for research apprenticeship, and 16 percent overall.* Of
special significance and thus to be emphasized is the relatively
greater increase in support for research apprenticeship than for
research, in order to prepare for meeting national needs in the
mid-1970's.

*There is another, simpler, kind of calculation that also leads to this over-all
annual growth rate for the period 1966-1971. The Westheimer report* on chem-
istry (page 166) tied PhD production to total federal obligations for basic re-
search in the field, leading to a figure for "Federal support cost per PhD
produced." For 1962, the year reported on in the Westheimer report, the mathe-
matical sciences had the lowest such cost, namely approximately

$22.6 million = $55,000/PhD.
410 PhD's

For 1966, we find that it was approximately

S50 million =
770 PhD's

$65,000/PhD,

indicating that from 1962 to 1966 the cost per PhD had increased by approxi-
mately 4 percent per year. Supposing it to continue to increase at this rate, this
cost will be approximately $80,000/PhD by 1971. With about 1,300 PhD's pro-
jected to be produced in 1971, this gives, for federal support of basic research in
1971,

$80,000/PhD X 1,300 PhD's = $104 million.

This is slightly more than double the 1966 figure and may be computed to call
for growth at an average annual rate of just about 16 percent.
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The final sense of our reco»zmendations, however, does not lie
in these particular figures but in identifying the factors that must
serve to determine theni. As our knowledge regarding the latter
improves, both budget projections and growth rates can be adjusted

accordingly. Hence, our recommendations (especially Recommenda-

tions 3 and 20) call for continuing efforts of investigation and
analysis to develop suitable planning factors and information about
research and education in the mathematical sciences so that. evolving

needs and trends can be appraised more reliably.

As the demand for mathematical-science instructors with PhD
education will continue to outrun supply in the shorter time frame
in any case, their number must be increased by using opportunities
that have so far been neglected for one reason or another. Par-
ticular programs toward such an end are the subject of Recom-
mendations 13 and 14. For the 50 postdoctoral teaching fellowships
of Recommendation 12, the cost of supplementary stipends (about
$8-9 thousand each) and administration should not exceed $600
thousand per year. The special part-time graduate fellowships for

women under Recommendation 13 would constitute about 10 per-

cent of all available full-time graduate fellowships in the mathemati-

cal sciences, i.e., about 100 initially and perhaps 200 five years
hence. Cost, including administration, would range correspondingly
from $300 thousand to $600 thousand.

In addition to the need for a basic policy that maintains the
present momentum of research and research apprenticeship in the
mathematical sciences across the board, our recommendations recog-

nize certain critical areas in which more than ordinary efforts are
needed if the mathematical-sciences community is to render the
required services in today's social fabric. These are Recommen-
dations 2, 3, and 4 relating to the support of research and research
education in computer science and in the applied mathematical
sciences as such.

Planning factors to gauge tbe development of research and re-
search education in computer science are provided by the size, the
cost, and the growth rate of this country's computer establishment.
It is clear that it will be some time before the schools and univer-
sities will have caught up even approximately with the require-
ments that this is generating. Not the least among these is the grow-

ing use of computers in the educational process itself, the full-scale
expansion of which has been recommended by the President's Sci-

ence Advisory Committee in the Pierce report.3 At the same time,
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the availability of support for computer science as a field of research
in its own right has been minuscule in comparison to its economic
and intellectual importance. Under the conditions, there is no
choice except to stretch the capacity of high-quality departments as
far as this is possible with resources in faculty, space, and computer
facilities, potentially available to them, in order to engage in
original research and, especially, to create opportunities for research
apprenticeship.

The appropriate level of support for such programs is notoriously
difficult to project, one of the more recent proposals suggesting that
it be made a flat percentage (e.g., 5 percent) of the $415 million esti-
mated by the Pierce report as being required by 1971 to cover the
educational use of computers in universities. There are at present
a dozen or more departments of computer science that would qual-
ify for support under Recommendation 2; five years from now, their
number may well have tripled. This suggests a program, starting at
$6 million and stabilizing at $15-20 million no later than five years
hence. If, however, the doubling time of the number of eligible
departments should be two years, rather than the three years esti-
mated above, these projections would represent gross underestimates
for the latter years.

In contrast, the support of a few research and research training
programs of exceptional quality in the applied mathematical sci-
ences for their own sake will be of low cost. There are today prob-
ably no more than half a dozen universities that would qualify for
such a program. Program cost would therefore amount to an initial
$500.000, growing to $1.5-2 million per year in the course of the
next thiee or four years and stabilizing at that point.

Undergraduate and Early Graduate Education
Of the recommendations in these critical areas, three relate to faculty
improvement in undergraduate colleges. Two of these (Recom-
mendations 16 and 17) call for appropriately directed expansion of
existing programs. Doubling in the course of five years the number
of available National Science Foundation Science Faculty Fellow-
ships in the mathematical sciences alone would increase the program
by only about $1.5 million a year. Planning in this connection, how-
ever, will have to take into consideration the Science Faculty Fel-
lowship program as a whole in the establishment of proper balances.
With respect to summer institutes, as proposed in Recommendation
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17, the underlying current estimates are that, of the roughly 10,000

college teachers in the mathematical sciences, approximately 10

percent should have the opportunity each year of participating in

summer institutes. Effective training groups run about 30 students

each, which would lead to some 35 institutes per summer, tripling

the currently supported number. Costs per institute will range from

$70,000 to $100,000, so that initial program totals would lie at

around $3 million, rising in future years.
Recommendations 14 and 15 propose certain forms of student

assistance. Neither of these programs is likely to be very expensive.

The support of graduate students in colleges and universities, offer-

ing no PhD degree but a high-quality master's degree in the mathe-

matical sciences, is meant to be experimental and therefore limited

to perhaps 15 to 20 typical such schools. The program of special

fellowships or forgivable loans to promising students, emerging

from colleges with inadequate departments in the mathematical

sciences, would be gauged to make 200 awards per year at a total

program cost of $1 million.
The development, finally, of undergraduate programs in the

applied mathematical sciences is largely an internal decision of

university administrations, which might be expedited only periph-

erally by the possibility of federal support. If the primary resources

exist to offer such programsbe they in comprehensive applied

mathematics, statistics, computer science, or operations research
the difference of providing the necessary management, housekeep-

ing, office and classroom space, and other facilities is more a matter

of support of university infrastructure as a whole than of particular

fields. The moral pressure of concerned interest, backed up as neces-

sary by an occasional subsidy of the right sort, is all that is needed

to implement Recommendation 19.

Applied Research
Applied research in the mathematical sciences, supported by mis-

sion-oriented agencies in the context of and for immediate utiliza-

tion in specific applications of significance to the sponsoring agency,

is of very recent origin. As late as 1960, it amounted to no more
than $6.6 million out of total research obligation of $23.6 million
all of 28 percent. By 1966, it had increased to certainly not less than

$62.4 million and probably more nearly $78.4 million, amounting

to between 53 percent and 63 percent of the total for mathematical-

,
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sciences research. Recommendations 6 and 7 essentially call for
agencies that traditionally sponsored applied research in the
mathematical sciences to continue to do so at levels and in direc-
tions in which it has been found useful, and for newly established
agencies to contemplate comparable participation in the develop-
ment, adaptation, and use of mathematical techniques relevant to
their problems. No long-term rates of growth are projected, and
levels are expected to be set by needs and opportunities as they
are identified. The yearly rate of growth of this portion of the
research budget has been decreasing, but the latest figures place it
still above the growth rate for academic research in comparable
periods.

Sources and Forms
Continued participation in the support of academic research by
the National Science Foundation and by other agencies is called
for by Recommendations 5 and 6. No quantitative apportionment
of relative shares is proposed, provided the levels of Recommenda-
tions 11 and 12 are met.

Recommendations 8 and 9 identify the relative functions of
project funds and other forms of support for academic research.
Again trends rather than absolute quantities are stressed. It is pro-
posed that project support remain pre-eminent and, among the
various forms of broader support, areas as well as departmental
grants be given increased utilization as against interdepartmental
and institution-wide grants for the development of quality in the
mathematical sciences.

Cautionary Remarks
The mathematical sciences, perhaps more than any other major
discipline of modern science, play a pivotal role in a wide variety
of contexts, both in opportunities for application and in require-
ments of education. The programs recommended in our report
reflect this diversity. Each of these programs is designed to meet
needs that in some contexts have emerged as urgent, but no single
priority scale applies across the board; hence their adoption as a
whole or in part, down to some given level of priority, cannot be
made the subject of a single action at the national level.-Instead,
we expect our recommendations to be implemented, either indi-
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vidually or jointly, as permitted by the internal priorities of the
various agencies involved and by the national emphasis given to
the goals of which our objectives are a part. Many of cur recom-
mended programs may, of course, be completely merged into other
similar but broader programs.

The same considerations apply to our crude projections of costs,
with their wide differences in reliability, amounts involved, and
periods spanned. To combine them all into one grand balance
sheet would not be very useful. Each of the contexts for implemen-
tation of these programs has its own scale of benefits relative to
which the programs must be weighed.

Since a number of these programs will be funded by agencies
that share in their implementation as parts of other, broader activ-
ities, often of a more applied nature, a good deal of support of the
mathematical sciences may be termed "implicit." In particular, this
implies that the federal government must be alert to the impact on
the mathematical sciences of abrupt shifts in criteria for support
within mission-oriented agencies.

,
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The State of the Mathematical Sciences



This part of the report contains an overview of the mathematical
sciences. It has been written in a form that we hope will be mean-
ingful to nonmathematicians. hi order to accomplish this, and to
keep the report within reasonable size, it was necessary to sacrifice
any attempt at completeness. It was also necessary to avoid details
and the use of symbolism, without which a profound discussion of
mathematical subjects may be impossible. Yet we hope that this
Part, supplemented by our collection of essays,7 will communicate
to the nonmathematical scientist and the educated layman a feeling
for the intellectual atmosphere of mathematical sciences at the
threshold of the last third of the twentieth century.
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HISTORICAL PERSPECTIVES

Starting with the first expression of rational thought, mathematical
thinking influenced the development of our culture in general and
was decisive in the creation of science and technology. The inven-
tion and development of the infinitesimal calculus preceded the
eighteenth century age of enlightenment; these mathematical ideas
and techniques made possible the beginning of the industrial age.
The many mathematicians engaged in the development of analysis
extended the scope of mathematics itseif and provided tools for
solving problems as diverse as those of the motions of dynamical
systems, the flow of liquids and gases, problems involving the
strength of materials, and, late in the nineteenth century, the theory
of electrical and magnetic phenomena. The definitive formulation
of this latter area by Maxwell required still more advanced mathe-
matics. Alongside these developments in analysis, general mathemati-
cal ideas in algebra and geometry found their important role in
foundations of physical theories. The non-Euclidean geometries and
more abstract spaces became the mathematical precursors of new
physical theoriesthe theory of relativity, for example. Certain
abstract mathematical constructions constitute a prelude to formu-
lations of quantum theory. By the end of the nineteenth century
and at the beginning of the twentieth century a vast mathematical
apparatus was being used not only for dealing with problems in
astronomy and in physics and in many branches of engineering, but
also in sciences like chemistry, which are built upon theories in

45
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physics and involve an increasing use of mathematicson all levels
from the elementary to the most abstract.

Because of the long, deep, and essential connection between the
growth of mathematics and that of physics, mathematics is often
classed with the physical sciences; its impact on civilization until very
recently was almost exclusively through its applications to astron-
omy, physics, chemistry, and engineering. Yet mathematics has
features that distinguish it from all experimental sciencesand
perhaps from all other sciences.

One is the deep roots that mathematics has in the past. Some of
the problems on which mathematicians work today go back several
thousand years. Much of contemporary mathematics is a direct
continuation of the work begun by the ancient Greeks. A more basic
difference between mathematics and experimental sciences, includ-
ing even the most theoretical branches, lies in the extent to which
mathematical research originates within the body of mathematics
itself. Physicists, chemists, biologists, and psychologists are more or
less directly concerned with observable phenomena. Mathematicians
often receive the seed of their problems from the outside world,
sometimes through other sciences, but once a mathematical problem
or concept has been formulated, it acquires, as it were, a life of its
own. In a simplified way mathematics consists of abstractions of
real situations, abstractions of abstractions of real situations, and
so on. It is surprising but true that these abstractions of abstractions
often turn out to further our knowledge and control of the world
in which we live.

During and after the Second World War, mathematical thinking
penetrated the sciences and the development and organization of
technology at an ever-accelerating rate. Probability theory has
played an increasing role not only in the natural sciences but in-
creasingly in all work dealing with problems of organization, in
economics, and in sociology. In the last decades, problems of life
sciencesin biology especiallyhave begun to require matheraati-
cal formulations. Dramatic recent discoveries in molecular biology
open still newer prospects for the use of mathematical ideas and
models in the understanding of life processes. This increasing rate
of mathematization is further accelerated by the development and
use of automatic computers.

New fields of technology, made possible through the exploitation
of the discoveries in physics of this century, require sophisticated
use of mathematics as an absolutely necessary condition. The enor-

v
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mous progress in electronics that has changed the entire pattern of
communicationincluding information theory, network synthesis,
feedback theorywould have been unthinkable without all the
mathematics that goes into the development of basic concepts and
into their application. The technology of nuclear energy and the
conquest of space are being made possible only through the advent
of the automatic computer, a development which in turn was predi-
cated upon all the -work in foundations of mathematics and mathe-
matical logic, along with the technology of electronics.

Mathematics is involved in the problems of communication
through the telephone, the radio, the transmission of pictures
and, more recently, in the exponentially growing problems of collec-
tion, classification, and transmission of data in general. Physical
communication and transportation, on the ground and especially
in the air, require increasingly a study of organization and traffic-
control problems of mathematical character. It is no exaggeration
to say, therefore, that the fundamental problems of national life
depend now, more than ever before, upon the existence and the
further growth of the mathematical sciences and upon the con-
tinuing activities of able people skilled in their use.

The developments sketched above amount to a mathematization
of our culture. The re tiarkable growth in this mathematization is
easily documented. For instance, an authoritative report on applied
mathematics submitted to President Roosevelt in 19408 estimated
that in the future industry might require as many as 10 mathe-
matics PhD's per year. By contrast, the figures of new mathematics
PhD's entering industry in 1966 has been estimated at 200. Several
new disciplines, like mathematical linguistics, hardly existed 25
years ago. Less dramatic but not less significant is the increase in
mathematical sophistication in all fields of engineering.

In all engineering journals, 50 percent or more of the papers in recent
issues would probably have been rejected by the editors as too mathematical
ten or fifteen years ago.

The preceding lines are from W. Prager's memorandum to
COSRIMS. In this same memorandum he writes that:

Twenty years ago, the typical mathematical preparation of the future engi-
neer consisted of a review course in trigonometry and analytic geometry and
a formal course in calculus aimed at proficiency in handling routine prob-
lems. Today, the 1 eview course has disappeared from the curriculum while
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the emphasis in the second course has shifted from problem solving to theunderstanding of basic concepts. A fairly rigorous course on ordinary differ-
ential equations has been added to the typical curriculum, and students areencouraged to take as many mathematical electives as can be fitted into their
program. Foremost among these are vector and tensor analysis, complexvariables, transform methods, variational calculus, probability and statistics,and numerical analysis.

Mathematics was, of course, always a traditional part of the edu-
cation of an engineer. But now it is becoming an essential part of
the education of biologists, psychologists, economists, and many
others. Therefore, the first obligation the mathematical community
has toward society is in the realm of education. We consider these
problems in Part III of this report.

Another novel situation is the greatly increased number of people
doing mathematical research. Mathematical sciences have shared
with all sciences the almost explosive increase in the number of
investigators. For instance, Mathematical Reviews, an international
abstracting journal, reviewed approximately 2,000 papers in 1940
and approximately 15,000 in 1966. The number of mathematical
journals published throughout the world has increased correspond-
ingly. These figures in themselves would be of little significance
had the increase in quantity been paid for by a drop in quality.
While objective studies of quality in mathematical or indeed any
research are difficult, it is the considered opinion of this Committee
that both the average quality of published research and the quality
of the best work today are comparable with what they were in the
1920's or in the decade preceding World War I.

THE NATURE OF MATHEMATICS

The essential features of mathematical search and discovery have
remained the same for centuries. So have its main sources of in-
spiration: the external world and its own internal structure.

Mathematics done for its own sake is traditionally designated as
"pure mathematics" and mathematical investigations aimed at in-
creasing our understanding of the world are classified as "applied
mathematics." Such a division of mathematics into pure and ap-
plied, however, is difficult to maintain; the origin of many important
mathematical ideas can be ultimately traced to applications, and,

1
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on the other hand, mathematics created for its own sake often turns
out to be important for applications.

The mode of origin of a mathematical concept or technique may
be only very loosely correlated with its ultimate applications.
Fourier considered mathematics as a tool for describing nature.
But the impact of "Fourier series," crucially important as these
series are in physics and engineering, has been particularly felt in
some of the "purest" branches of mathematics. Cayley, on the other
hand, believed that matrices, which he invented, would never be
applied to anything useful (and was happy about it). They are now
an everyday working tool of engineers, physicists, economists, and
statisticians.

Geonetry originated in practical problems of land measurement.
It was developed by the Greeks into an axiomatic system and inten-
sively studied for its own sake. Among Euclid's axioms, there was
one (the parallel axiom) that was less intuitively evident than the
others. The realization that this axiom could not be logically de-
rived from the remaining ones came only after centuries of struggle
and led to the discovery of non-Euclidean geometries (see Coxeter's
essay in reference 7). At the time of their birth, these geometries were
the answer to a purely logical problem, and even their creators did
not dare to attribute to them any counterparts in the real world.
But Riemann already suspected that the physical universe in the
large niay be non-Euclidean, and his intuition was brilliantly con-
firmed by Einstein's theory of general relativity, a theory that still
provides mathematicians with challenging problems.

These examples show the futility of attempting to draw dividing
lines between pure and applied mathematics. The difference is not
so much in subject matter as in original motivation. Also the name
"pure mathematics" is unfortunate since it implies a monastic aloof-
ness from the world at large and an isolation from its scientific,
technological, and social concerns. Such an aloofness may be char-
acteristic of some mathematicians. It is certainly not characteristic
of mathematics as a collective intellectual endeavor. In fact, many
of the greatest mathematicians have attacked, with equal vigor,
enjoyment, and success problems posed by nature and problems
arising from mathematics itself. For example, Hermann Weyl con-
tributed in equal measure to the theory of groups as a pure mathe-
matical discipline and to the effective uses of this theory in the
theoretical constructions of atomic physics.
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We, therefore, prefer not to use the term "pure mathematics,"but replace it by the more descriptive term "core mathematics."
The core comprises those highly developed subdivisions of mathe-
matics that have been and are being investigated primarily for their
own sake. The term "core mathematics" also reminds us of the
central position of so-called "pure" mathematics with respect to all
mathematical sciences.

Intellectual curiosity and intellectual excitement are the main
motivating forces behind research in all mathematical sciences, asthey are in all sciences in general. The thrill of recognizing a pattern
in a seemingly chaotic situation and of reducing a large number of
apparently unrelated phenomena to a single simple principle are
again characteristic of all sciences; but in the mathematical sciences,
and especially in core mathematics, the part played by such con-
siderations is so predominant that some mathematicians consider
mathematics to be as much an art as a science.

Mathematics is typically done by individuals rather than by
groups; yet it is a collective effort. This is seen, for instance, in thefact that important discoveries are often made by several people
working independently irz different parts of the world. Personal
contact among mathematicians in the same field is often an essen-
tial condition for successful work. But the actual work is almost
always done by one man thinking about a problem. Very few
mathematical paperc have three authors and practically none have
more. Since mathematics is one of the intellectual activities in which
one manunaided, unsupervised, and undirectedcan make im-
portant contributions, it continues to attract some of the brightest
young people.

One striking feature of mathematical research during the past
decade is the confluence of various mathematical disciplines. Dur-
ing the years around World War II the tendency toward speciali-
zation appeared serious. It was feared that the boundaries between
various fields of core mathematics would solidify so fast that mathe-
maticians of different specialties would be unable to talk to each
other. We see now that these fears were not justified. Recent devel-
opments have led to an interpenetration of fields, which will be
illustrated in Chapter 4.

Indeed many mathematicians believe that this is a golden age of
mathematics. They point out that many famous problems that have
baffled mathematicians of the past are being solved now, that mathe-
matics is being applied in an ever-increasing number of other dis-
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ciplines, and that young men entering upon research careers (and
their advisers) have no difficulty in identifying interesting problems.

CORE AND APPLICATIONS

"The similarities are essential, but the differences are vital!"
Progress in the central core of mathematics proper, where most of
the essential tools and new concepts are hammered out, has long
and in large measure depended upon abstraction, upon recogniz-
ing that seemingly very different things have enough in common
to be governed by common considerations, by an abstractly formu-
lated mathematical structure. History shows that the worker in the
core accomplishes more if he acts, and often feels, as if things ab-
stractly equivalent were really the same.

In the applied mathematical sciences, however, it is often neces-
sary to take almost the opposite attitude to that which is so helpful
in the core. Here the important aspects are specific (sometimes
quite concrete, sometimes more abstract from the viewpoint of some
particular subject-matter field), rather than mathematically abstract.
Indeed, the mathematical abstraction is almost always approximate,
and it is usually vital to admit, at the proper time, the approximate
character of the answers.

For the applications of mathematics to grow at a rate com-
mensurate with the demands of society, they must continue to
receive an ever-growing supply of new results, new concepts, and
new approaches from the central core. Applied areas would ulti-
mately starve without what is made available by the core. Less
directly and obviously, but just as inevitably, the core would lose
much stimulation and implicit guidance, and indeed its develop-
ment would be badly distorted and stunted, if it were cut off from
applications. It is essential to recognize both the existence and com-
plexity of these relations between the core and applied areas and
the importance of maintaining communication between them. We
shall return to this question.

Those intellectual efforts coming half way between core mathe-
matics, on the one hand, and the sciences and technologies to which
mathematics is applied, on the other, are often referred to as
"applied mathematics." This is accurate only if it is understood that
these efforts include not only the traditional parts of mathematics
concerned with applications in physics, chemistry, and engineering
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(which we shall refer to as physical mathematics or classical
applied mathematics), but also statistics, computer science, the gen-
eral field of optimized allocation, control, and decision-making, and
fields such as mathematical biology. Each of these fields has a char-
acter of its own, but they have in common a spirit that is well
described in reference 9:

. . mathematics is "applied" if conceived in a spirit of ready cooperation
with sister sciences in the grand endeavor of comprehending our environ-
ment, making sense of ourselves, and bringing order into their interaction.
Like all good mathematics, good applied mathematics is original and imagi-
native in the invention and use of its concepts and in its tentative modeling
constructions. Its chief distinction from pure mathematics, which shows
self-motivated progress along dimly discernible natural paths of growth
towards intellectually satisfying goals, lies in adding to this conceptual
activity a deep concern for the world of outer experience and a ready in-
terest in problems beyond the confines of mathematics.

In common with the core mathematician, many applied mathe-
maticians are interested in the stimulation of the development of
new mathematicsbut with primary emphasis on those aspects
strongly and directly motivated by scientific, technological, or
sociological problems. In common with the theoretical scientist, the
applied mathematician seeks knowledge and understanding of facts
and phenomena through the use of mathematical methods.

The applied mathematician is most typically engaged in the
formulation, analysis, and interpretation of mathematical models:
in other words, (a) the formulation of scientific, technological, or
practical problems in terms of abstract mathematical models; (b)
the solution of the resultant mathematical problems, which may
consist of detailed answers or new techniques; and (c) the discus-
sion, interpretation, and evaluation of the results of this analysis,
especially in relation to the correspondence between the abstract
model and the real world. In different areas of the applied and
partly mathematical sciences, the character of these models may
be quite different. In computer science, for example, they some-
times take the form of a detailed computer program. The final goal
of these efforts is the creation of ideas, concepts, and methods that
are of basic significance to the subject in question. As mentioned
above, these efforts may lead to the creation of new mathematical
ideas and theories.

When thinking of "applications" and "mathematics" together,
the nonmathematician tends to think of an immediately applicable
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solution to his own pressing problem. The applied mathematical
sciences do indeed contribute in such immediate ways, but they
also contribute throughout a range, of greater or less immediacy,
stretching to the very edge of core mathematics. All these varied
kinds of contribution are important, not least those that have the
same pure-science character as core mathematics.

CRITICISMS AND TENSIONS

The highly exciting achievements within core mathematics and
explosive penetration of mathematics into other fields are generally
recognized. At the same time, criticism of mathematicians by other
scientists as well as criticisms within the mathematical community
itself are far from uncommon. Certain of these criticisms may be
summarized as follows. It is said that during the recent past mathe-
maticians have alienated themselves from the mainstream of scien-
tific development.

One thing modern mathematicians tend to overlook is that the giants of
former days were all actively interested in physics as well as mathematics.
This is the first generation for which this is no longer true.

From a letter by a prominent physicist

It is also claimed that what contemporary pure mathematicians do
is of interest only to themselves and most, if not all, of it will never
be used in any other discipline. While all sciences require sophisti-
cated mathematical tools and present interesting and challenging
mathematical questions, mathematicians are said to be ignorant of
and not interested in these questions. This state of affairs is alleged
to be particularly and perhaps specifically characteristic of Ameri-
can mathematicians.

Has American mathematics become so remote that scientists will have to
turn to other schools of mathematics [Russia?) for help in the future?

From the same letter by the physicist

This criticism is not new. Mathematicians have long been criticized
for being too abstract and too remote from the needs of science.
Thus as knowledgeable and distinguished a mathematician as Felix
Klein considered the Hamilton-Jacobi theory of dynamics as a play-
thing of no use for physics (F. Klein, Vorlesungen fiber die Entwick-
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lung der Mathematik im 19. Jahrhundert, I, Springer, Berlin, 1926,
p. 207). Yet the Hamilton-Jacobi theory proved to be the basis of
quantum mechanics. Even the greatest of physicists may err in their
evaluation of mathematics. Einstein was at first reluctant to accept
Minkowski's four-dimensional geometry as the proper description of
special relativity, and several years later he was reluctant to express
his physical ideas in the language of tensors. The history of science
has shown time and time again that it is impossible to predict what
mathematical theories will turn out to be useful outside of pure
mathematics.

This point can hardly be stressed too much. Planning the over-all
emphasis of mathematics, either for the progress of mathematics as
an end in itself or for its application to other sciences and tech-
nologies, must fail lamentably. There is a process of natural selec-
tion in mathematics. For instance, abstraction for abstraction's sake
rots away rapidly if it leads to no new intellectual progress; abstrac-
tion that only appears to be for abstraction's sake often proves to
be of vital importance. Unconstrained opportunities to succeed or
fail; broad diversity, both of individual activities and organizational
patterns; ease of change, especially in giving up old patternsthese
are the characteristics that have tended to allow the mathematical
sciences to make progress.

The claim that "the giants of former days were all actively inter-
ested in physics as well as mathematics" is illusory. To be sure,
Gauss, Riemann, and Poincaré were actively interested in physics.
But one can easily think of first-rank mathematicians of the nine-
teenth century whose interests were exclusively mathematical.
Among them there were several whose work, unbeknown to them-
selves, turned out to be of vital importance for other sciences (for
instance, Frobenius, who founded the theory of group representa-
tions). There have been contemporary mathematicians with inter-
ests as catholic as those of the greatest men of the nineteenth cen-
turyfor example, Hermann Weyl, Wiener, and Von Neumann
or Gelfand and Kolmogorovbut it is unreasonable to expect more
than a few such men in a generation.

Still, the charge that mathematicians have separated themselves
from their sister disciplines like physics and astronomy reflects a
true state of affairs. Specialization is the inevitable price of the
increase of knowledge. One cannot expect many future scientists to
combine mathematical and physical achievements in the manner
of Newton or Gauss. Yet we must not allow ourselves or our stu-

1
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dents to become intimidated by the "explosion of knowledge." The
problem facing us is mainly that of cornmunic, %ion and by impli-

cation, that of education.

IMPROVING COMMUNICATIONS

In the mathematical sciences, as in most other sciences, the explo-
sive growth of activities has had an important side effect. The
problems of communication between scientists in various disciplines,
between the creators of new theories and the users of these theories,
between investigators and teachers, between teachers at variol..b

levels, between working scientists and scientific administrators, and
last but not least between the scientific community and the citizenry
at large have become difficult and require a conscious effort at
solutions.

The volume of scientific literature has increased so much that
the average working mathematician cannot even scan all the review
journals. This results in the paradoxical situation that while many
more printed pages of mathematics appear than ever before, mathe-
maticians must depend to a large extent on personal contacts and
personal correspondence in order to keep abreast of the current
developments in their specialties. (This explains why conferences
and symposia are an indispensable part of contemporary scientific

research.) The ultimate solution may come from radical new
methods for storing, retrieving, and dispensing information. Per-
haps journals, books, and libraries as we know them will be replaced

by other techniques. This, however, will not happen at once.
A different problem is that of communication between various

branches of the mathematical community. Here the difficulties are

not technical but psychological and intellectual. In the central
area of core mathematics any threat to the exchange of ideas and
results between subdisciplines has been overcome through recent
unifying tendencies. On the other hand, this danger is acute as far
as the interfaces between core mathematics and the applied and
partly mathematical sciences are concerned and even more so be-
tween the mathematical sciences as a whole and the various users of
mathematics. What is needed is a conscious effort by highly qualified

people to overcome this "communication gap" by specially written
books and articles, by interdisciplinary conferences and courses, and
by other appropriate means. If this endeavor is to be successful,

A
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leadership must come from the profession, specifically from indi-
viduals. Financial support, where necessary, will also have to be
found.

The problems of communication and publication have recently
been considered in more detail by the American Mathematical
Society's ad hoc Committee on Information Exchange and Publica-
tion in Mathematics. By special permission we have reproduced that
committee's final report in Appendix B. Its recommendations are
addressed to the American Mathematical Society but may provide
more general guidance.

During the past decade, the mathematical sciences have made
strenuous and successful efforts to establish communications be-
tween the investigators and teachers of mathematics at various
levels. The various programs for curriculum reform in high schools
and elementary schools involve joint work by university mathe-
maticians and teachers. The manifold activities of the Committee
on the Undergraduate Program in Mathematics (cuinvi) establish
a link between graduate schools and colleges We do not believe
that any of these groups has already found definitive solutions to
the problems of mathematics education. Valuable steps have
already been taken, however, and such work should be continued
and supported.

The problem of making mathematics understandable to the edu-
cated layman continues to be almost insurmountable. A Greek
tyrant who wanted a rapid explanation of mathematics was told
that there was no royal road to this science. This remains true. It
is equally true, however, that the mathematical community has a
duty to do all it can to make its work understandable to those who
want to understand it. The collection of essays7 to be published in
conjunction with our report is a modest contribution in this direc-
tion.

r
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Core Mathematics

A "state-of-the-art" report for core mathematics will not be
attempted here. It would be almost impossible to prepare a report
meaningful to nonmathematicians, and a report of value to the
mathematical community would require an extraordinary effort
by a very large number of people. Instead we attempt in this chapter
to describe in rather general terms some aspects of core mathe-
matics as it appears to some of its practitioners. The essays on
selected topics in mathematics, which appear in a separate volume,7
serve as an elaboration and illustration.

We organize our remarks around the traditional subdivisions of
core mathematics. It should be remembered, however, that the
boundaries between these fields have become much less precise than
they used to be, and that some of the most important developments
are occurring precisely at the interfaces between different fields or
in areas that cannot be accommodated within the existing classifica-
tion. As a matter of fact, the confluence of mathematical ideas and
the interpenetration of the various fields are the most character-
istic and most rewarding features of contemporary core mathematics.
A sketchy presentation couched in nontechnical language can con-
vey only a pale reflection of the excitement felt by those who par-
ticipate in these developments.

MATHEMATICAL LOGIC

Logic is one of the most ancient mathematical sciences, since it is
at least as old as Aristotelian philosophy and Euclidean geometry.
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However, mathematical logic, also called symbolic logic, reallydeveloped in the second half of the ninteenth century, when it wasobserved that familiar logical operations can be expressed by alge-braic formulas, and when it seemed possible to define such basicmathematical concepts as the natural numbers 0, 1, 2, 3, . . . inpurely logical terms.

A major reason for the flowering of mathematical logic lies in thecreation of the theory of infinite sets, during the same period, byGeorg Cantor. This theory influenced all mathemat:cs. It also ledto the discovery of paradoxes, nonsensical conclusions reached byseemingly legitimate reasoning processes. Some of these new para-doxes* are similar to ones encountered by ancient Greek philos-ophers,t which Aristotle disposed of by what we now considerinsufficient arguments.
Since unfettered reasoning had led to paradoxes, mathematiciansrecognized that the processes of logical thought require regulation.Thus, it should be possible to reduce any legitimate piece of mathe-matical reasoning to manipulation of symbols using only statedaxioms and stated rules of inference. So reduced, the reasoning issaid to be "formalized." Of course, formalization in itself providesno warranty that paradoxes will not arise (as indeed they might ifthe axioms and rules have been badly chosen). But without formal-ization we cannot deal in a precise way with the problem of suitablyregulating mathematics.

For many years it was the hope of mathematicians that all mathe-matical reasoning could be formalized in one logical system. Aremarkable discovery by Gödel in 1931 shattered this hope, how-ever, and had far-reaching repercussions among the philosophers.
What Gödel established was "incompleteness" for certain particularformal systems ("Principia Mathematica" of Whitehead and Rus-sell, and related systems). But the incompleteness was soon recog-nized as applying to every formal system that is correct (only truestatements being provable) and sufficiently rich to include ordinaryarithmetic. In any such system, there are statements, even aboutwhole numbers, that are true but cannot be proved within the sys-tem.

* Here is a sample. The expression, "the least natural number not nameable infewer than twenty-two syllables," names in twenty-one syllables a natural numberwhich by its definition cannot be named in fewer than twenty-two syllables.(G. G. Berry, 1906)
t X says, "I am lying." Is X telling the truth? (Eubulides, fourth century p.c.)
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This generalized form of Gödel's theorem rests on accepting a
precise analysis of what an "algorithm" or "preassigned computa-
tional procedure" is in general. Such an analysis, accepted by most
logicians, was given in 1936 by Church and independently (in an
equivalent form) by Turing. Previously, mathematicians had dealt
only with many particular examples of algorithms, some discovered

by Euclid or before.
Church and Turing each used their analysis to exhibit an infinite

class of questions with the property that no algorithm suffices to
answer correctly all the questions of the class. No matter how long
and hard mathematicians may have worked at devising methods for
answering questions of the class, there will be some questions that
can be answered only by inventing still further methods. Most re-
cently (since 1948), it has been shown that such classes of questions
(sometimes called "urrolvable problems") arise in other parts of
mathematics.

One of Cantor's first achievements was the proof that there are
"more" points on a straight line than there are natural numbers; it
is impossible to match up all the points on a line with the natural
numbers 0, 1, 2, 3, .... Cantor conjectured that any set of points on
the line either can be rearranged into a simple sequence or else

contains "as many" points as there are on the whole line. This con-
jecture, called the continuum hypothesis, was considered one of the
main unsolved problems in mathematics. In 1939, Gödel proved
that the continuum hypothesis cannot be disproved by the methods
used in contemporary mathematics and formalized in existing sys-
tems of set theory. About a quarter of a century later, P. Cohen
showed that the continuum hypothesis cannot be proved by such
methods either. For further information see Smullyan's essay in
reference 7.

What has been said up to now may convey the impression that
mathematical logic is a highly abstract subject, related to philosophy
and much too esoteric even for the taste of most mathematicians.
This is indeed the case. Yet this most austere of all mathematical
disciplines has made a contribution to America's fastest-growing
industry. By reducing mathematical reasoning, and in fact all
deductive reasoning, to purely mechanical manipulation of symbols
according to definite rules, mathematical logic prepared for the
development of digital computers. Indeed, a mathematical theory
has been completely formalized if any argument in it could in prin-
ciple be checked by computer. It is no accident that two mathe-

-VI,



60 The State of the Mathematical Sciences

matidans (Von Neumann and Turing) steeped in mathematical
logic participated in the development of modern computers. The
recognition, by Von Neumann, that Turing's work implies the
possibility of a universal computer saved years and millions of
dollars in development.

The interplay between mathematical logic and computing con-
tinues. Training in mathematical logic is often a way to creative
work in computer sciences, and the problems on which computer
scientists and logicians work sometimes have certain features in
common. Logicians, for instance, are interested to know whether
certain problems can be solved by algorithms. Computer scientists
ask the same question, except that they want to know whether cer-
tain problems can be solved by algorithms in a reasonable time on
existing or projected machines, and, if so, how this can be done in
the most economical way.

The difficulties in the foundations of mathematics that led to
the development of mathematical logic have not yet been wholly
resolved. There are various schools and points of view. For example,
in formulating existence proofs one school, the constructivists,
recognizes as valid only proofs in terms of algorithms, while another
school, the formalists, will accept a proof by contradiction.

NUMBER THEORY

Number theory is perhaps the oldest mathematical discipline. Posi-
tive integers appear to have been invented along with language,
and the most ancient civilizations that left written records were
fascinated by properties of integers. Problems in the theory of num-
bers can often be stated in a surprisingly simple manner, under-
standable to every schoolboy. Many of them deal with prime
numbers, those integers greater than 1 that are divisible only by
themselves and by I (2, 3, 5, 7, I I, 13, 17, 19, 23, 29, 31, 37, . . .).

Here is a famous problem: Is every positive even integer a sum of
two primes? The evidence seems to be all for it, as was first observed
by Goldbach in the early eighteenth century. Yet the Goldbach
problem is unsolved. It has been proved only that every integer is
the sum of, at most, 19 primes, and that there is a large number
such that every odd integer exceeding it is the sum of three primes.

The fascination that number theory exerts on mathematics is
twofold. First, there is the deep though seldom-verbalized conviction
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that in studying natural numbers we are investigating something
imperishable and eternal. We cannot conceive of intelligent thought
anywhere in the universe that would not arrive at natural numbers
as we know them, and an unshakable evidence of an extraterrestial
intelligence would be a communication containing the sequence
2, 3, 5, 7, 11, . . .

Another reason for the fascination of number theory is that its
problems, simple as they sound, often require for their solution the
most elaborate and sophisticated techniques available to mathe-
matics. A characteristic phenomenon of recent decades is the appli-
cation of probability theory to number theory and, very recently,
the applications of mathematical logic.

Modern number theory is concerned not only with integers but
also with so-called algebraic integers, that is, with numbers that
can be roots of algebraic equations with integer coefficients and
highest coefficient 1.* In studying algebraic integers one often uses
a geometric language hardly distinguishable from that of algebraic
geometry (see below).

Number theory has always had an experimental aspect. Interest-
ing properties of numbers can be discovered by experimentation,
though the truth of a proposition about infinitely many numbers
can never be established by verifying individual instances, however
many. The celebrated prime-number theorem, for instance, asserts
that the number of primes between 2 and a larger number x is
approximately

1-iFT-1-T-1-
'This was perceived by Gauss, who had computed long tables of
primes. The proof came much later and required, in its original
form, arguments from the theory of functions of complex variables.

Its experimental aspect is one reason why number theory is among
those disciplines of pure mathematics that feel the impact of the
computer revolution. The computer opened up new possibilities
for numerical experimentation. Number theorists use computers
not only to guess theorems but also to establish results. Numerous
plausible conjectures have been refuted by computer work, and

*For instance, 1 1 + -0-are atebraic integers since both numbers
are roots of the equation ,C2 - 2x 1 = 0.

"e.:*
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D. H. Lehmer used computers to prove theorems requiring too great
a ramification into cases for conventional methods of proof.

COMBINATORIAL ANALYSIS

Combinatorial analysis is concerned with a variety of "combi-
natorial" problems, many of which amount to: "In how many ways
can one perform a certain task?" The problems are usually easy to
state and may be very difficult to solve. They often have important
consequences for physical theory. We give an example:

Consider a checkerboard with n squares on each side, where n is
an even number. We ask for the number Na, of different ways in
which the board can be covered by dominoes, a domino covering
two squares. A complete solution to this problem is not known at
the present time; but it was recently found that, for large n, Nn. is
equal to (1.338515 . . )01'2). This result has significant implications
for statistical mechanics.

One of the most famous unsolved problems of mathematics, the
four-color problem, is combinatorial. This conjecture states that
any planar map can be colored with four colors in such a way that
any two adjacent countries have different colors. In spite of the
vigorous efforts of many talented mathematicians, this conjecture
has not yet been settled; a relatively easy proof shows that five
colors suffice.

Many of the developments of modern science and technology are
stimulating a renewed interest in combinatorial analysis. Problems
are arising from genetics, biochemistry, statistics, coding of infor-
mation transmitted to and from orbiting satellites, efforts to design
efficient circuits for electronic computers, and the development of
programming languages. (See Rota's essay in reference 7.)

ALGEBRA

The three major traditional subdivisions of mathematics are alge-
bra, analysis, and geometry. Most people, upon hearing the word
"algebra," remember the subject studied in high school and think
of problems involving the solution of linear and quadratic equations.
Those parts of algebra are actually 4,000 years old, and the language
of algebra, that is, the use of variables (letters) to represent num-
bers, dates from the Renaissance. Modern algebra is largely a devel-
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opment of the last 40 years. Yet its roots go back to earlier times.
Some of the essential ideas, for instance, appeared about 1830 in
the work of Evariste Galois, a man who was persecuted by his gov-
ernment for his radicalism and by his teachers for his impertinence
and who was killed in a duel at the age of 21. Modern algebra began
to blossom and to reach maturity as a result of the efforts of a
number of algebraists both in this country and abroad, inspired in
part by the work of a brilliant woman mathematician, Emmy
Noether. Its techniques and mode of thought play an important role
not only in other mathematical disciplines but also in various areas
of the biological, physical, and social sciences.

Modern algebra is concerned with the study of socalled "alge-
braic structures." Most of these may be considered as generalizations
of the basic structures of elementary mathematics: the system of
integers, the system of rational numbers, the system of real numbers,
the system of complex numbers, and the system of vectors (arrows)

in space.
We begin with an example of a structure. The elements in the

system of rational numbers are positive and negative common frac-
tions and integers, and the number 0. Among these elements there
are defined two operations, addition and multiplication. Any set
of elements for which two operations, called addition and multipli-
cation, are defined, obeying the same formal rules as in the case of
rational numbers, is called a field. For instance, the real numbers
form a field and so do complex numbers. Galois discovered the
existence of finite fields, that is, fields with only finite numbers of
elements. For instance, if p is a prime number, there is a field Zp
consisting of p elements, the numbers 0, 1, 2, . p-1. Addition and
multiplication in this field are defined by the prescription: add and
multiply in the usual way, then divide by p; the remainder is
called the sum or the product. (For instance, in Z3 we have

+ = 2, 1 + 2 = 0, 2 + 2 = 1, 2 X 2 = 1.) There are many
other fields; for instance, all rational functions of one variable with
complex coefficients form a field.

The advantage of considering systems about which we assume
nothing except the laws of addition and multiplication is that any
statement proved about them applies immediately to a wide variety
of fields in various branches of mathematics. The same is true about
other algebraic structures. In each case the central problem is to
describe the structure of the general system in terms of the struc-
ture of particular examples of the system.
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We will review briefly some of the subdivisions of modernalgebra.

Field Theory
The definition of a field was given above. The modern theory offields is concerned with the properties of a field K formed from afield F by adjoining to it the roots of polynomial equations with
coefficients in F. This theory, the modern development of Galois'
original work, is one of the most developed and fruitful parts ofalgebra.

Ring Theory
A ring is a set of elements in which two operations, addition and
multiplication, are defined, and these operations satisfy the sameconditions as in a field, with two important exceptions: it is notrequired that division by an element distinct from 0 be always
possible, and it is permitted that the product of two elements de-
pend on the order in which we multiply them. (The latter meansthat, in a ring, ab and ba may be different.)

An example of a ring is the ring of all integers. Here division is
not always possible, but the product of two elements is independent
of their order. Such a ring is called commutative. Another example
is the ring of all matrices with n rows and n columns. This is a
noncommutative ring since, if a and b are two matrices, it may
happen tha t ab and ba are different.

Rings arise naturally in many areas of mathematics. In analysis
(see below) many common sets of functions form rings, and the
results of ring theory contribute useful theorems in analysis.

Linear Algebra
During the nineteenth century, the theory of systems of linear
algebraic equations was codified into so-called linear algebra. This
part of algebra probably has more applications in other disciplines,
including engineering, physics, statistics, numerical analysis, and
social sciences, than any other. It is convenient to clothe linear
algebra in a geometric language. The basic concept is that of a
vector space over a field.

The standard example of a vector space is the set of ordinary
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geometric vectors, as used in physics. The elements may be thought
of as arrows in ordinary space drawn from a fixed point. Two vec-
tors can be added by the "parallelogram law." A vector can be
multiplied by a real number: the product of a vector by a positive
number a is obtained by leaving the direction of the vector un-
changed and multiplying the length of the vector by a; the product
of a vector by a negative number a is obtained by reversing the
direction of the vector and multiplying the length by a; the product
of a vector by 0, finally, is the so-called null vector of length 0. This
vector space is said to be "over the real numbers," since vectors are
multiplied by real numbers.

A vector space over a field F is a set of elements called vectors for
which one has defined two operations: addition of two vectors and
multiplication of a vector by an element F. It is required that the
same formal rules should hold as in the example above.

A vector space over F is said to have dimension n if, roughly
speaking, a vector can be specified by giving n elements of F. The
space of geometric vectors, for instance, has dimension 3 since, if
we introduce a coordinate system, each geometric vector can be
expressed by three real numbers. Finite dimensional vector spaces
occur in many parts of engineering, physics, statistics, numerical
analysis, and the social sciences.

Linear algebra is the study of finite dimensional vector spaces.
It is particularly concerned with linear transformation, those map-
pings of a vector space into itself that preserve addition and multi-
plication. Any linear transformation can be represented by a matrix
(square array of numbers, or of elements of F), so that matrix alge-
bra can be used to study the theory of linear transformations. The
results of linear algebra that do not dcpend on the finite dimension
of the vector space have had wide applications in functional analysis
(see below).

Algebras

An associative algebra is a finite dimensional vector space which is
also a ring. The study of such algebras began with the quaternions
of Hamilton (1843). The first definitive results were the funda-
mental structure theorems proved by Wedderburn in 1907. In recent
years, these results have been subsumed in results on the structure
of rings. An associative algebra is called a division algebra if divi-
sion by nonzero elements is always possible. Division algebras are
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the building blocks in the theory of algebras. Their structure has
1-een extensively studied, but a complete structure theory has not
yet been given.

A nonassociative algebra is a structure obeying the same rules as
an algebra, except that the product of three elements may depend
upon which two one multiplies first. Two classes of such algebras
are of main importance. The first are Lie algebras, in which any
three elements x,y,z satisfy the identity xy + yx . x(yz) + y(zx)
4- z(xy) . 0. Such algebras are fundamental for the study of con-
tinuous groups and, in recent years, have played an important role
in theoretical physics. The second class is that of the Jordan alge-
bras, originally suggested by quantum physics. These are character-
ized by the identities xy yx . x(yx2) (xy)x2 . 0.

Group Theory
Groups are among the simplest and most important algebraic struc-
tures. One of the most elementary examples of a group is the set
of all positive rational numbers in which one considers only the
operation of multiplication. A group is a set of elements in which
one operation, called group operation or group multiplication, is
defined; this operation must obey the same formal rules as ordinary
multiplication of rational numbers, except that we do not require
the commutative law (that is, ab and ba need not be the same).
The integers form a group if the group operation is the ordinary
addition; this group is infinite (it contains infinitely many elements)
and commutative. A somewhat more complicated example is the
finite group Sn consisting of all permutations of the first n integers.
The group composition of two permutations is obtained by carry-
ing out the first permutation and following it by the second. If n is
greater than 2, Sn is not commutative.

A basic problem of group theory is to determine the structure of
all finite groups. Since the building blocks out of which all finite
groups are constructed are the so-called finite "simple" groups,* an
* We give, for the sake of completeness, the precise definition of a "simple"
group. Let G and H be finite groups and let f be a rule that assigns to every
element g of G an element h = f(g) of H. If this rule preserves the group
operation, that is, if f(g1g2)= f(g) f(g2), and if every element of H is assigned
to some element of G, then f is called a homomorphism of G onto H. The group
G is "simple" if every homomorphism is either a homomorphism onto a group H
having as many elements as G or a homomorphism onto a group G consisting of
a single element.
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important part of the problem is the determination of the struc-
ture of these groups. There has been a recent breakthrough in the
subject with the proof (by Thompson and Feit) that if the number
of elements in a finite simple group is not a prime, it must be even.
This result has already had far-reaching implications and lends
strong support to the hope that in the not too distant future the
structure of all finite simple groups will be explicitly determined.

Groups are of fundamental importance in many mathematical
investigations and in many applications of mathematics. Some
people believe the underlying reason for this is that groups give a
precise mathematical meaning to the important geometric concept
of symmetry. (A brilliant exposition of this point of view is found
in Hermann Weyl's book.10)

Galois used finite groups to study the solvability of algebraic
equations by radicals, that is, by formulas involving only arithmetic
operations and root extractions. He showed that an equation can
be so solved only if its roots exhibit a certain symmetry. This
symmetry is always present in equations of degree 2, 3, and 4 but
not, in general, in equations of higher degree. In particular, there
is no general formula, involving radicals, for solving a fifth-degree
equation. (This epoch-making result was established before Galois
by Abel, another mathematical genius who died at an early age.)

The theory of groups is of importance in chemistry and physics.
The theory of finite groups has applications in crystallography, in
the theory of inorganic complex ions, and in spectroscopy. During
the 1920's and 1930's infinite groups were used in quantum
mechanics. Recent developments at the forefront of physics research

are intimately tied with the concept of symmetry and hence with
groups. As a matter of fact, physicists now use quite sophisticated

results from group theory. For more details, see Dyson's essay in
reference 7.

Homological Algebra and Category Theory

Modern mathematics is characterized by an ever-increasing range of
applications of algebra to other mathematical subjects (see Eilen-
berg's essay in reference 7). A particularly striking example is
topology, a branch of geometry concerned with qualitative rather
than quantitative aspects of shapes of geometric figures. In the early
1920's it was recognized, under the influence of Emmy Noether
especially, that the methods used by topologists are basically alge-
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braic. But just as every science that uses mathematics not only
exploits the existing mathematical theories but reshapes them to its
own needs, so topologists developed algebraic tools suitable for
their needs. The next step was a return to pure algebra. Algebraic
methods created for the needs of topology have been analyzed,
codified, and studied for their own sake. This led to two new sub-
divisions in algebra: category theory and homological algebra.
These are perhaps the most abstract specialities in algebra. Cate-
gories provide a language for discussing all algebraic systems of a
given type. The result is, as is so often the case in mathematics, a
wide variety of applications to diverse mathematical fields, in this
case from logic to such "applied" areas as the theory of automata.

ANALYSIS

Analysis, the youngest of the three traditional divisions of mathe-
matics, consists of ramifications of the calculus, a subject that was
discovered in the seventeenth century. The invention of the calculus,
traditionally associated with the names of Newton and Leibnitz,
was a momentous event in human history that made possible mod-
ern physical science.

The gist of the intellectual revolution brought about by the
calculus may be described as follows. If one wants to study by means
of calculus a complicated process occurring in nature, or in a
machine, or in society, or in a purely ideal mathematical world, one
begins by analyzing what happens "in the small." "In the small"
may mean during a very short time interval, or over a very small
area, or for very small changes of some other quantity. In many
cases it is relatively easy to find out how various interdependent
quantities change in the small. Formulas expressing this are usually
differential equations. The second task consists of deriving from the
simple laws governing what happens in the small the incomparably
more complicated laws describing what happens in the large. This
second step usually invo!ves solving differential equationsa purely
mathematical task.

Solving differential equations may have a different meaning de-
pending on the circumstances. Sometimes one is able to write down
a formula for a solution. More often one can only prove that there
is a solution satisfying the desired conditions, and one can indicate
a method for computing this solution approximately. Neither of
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the two procedures may give all desired answers, since one often
wants to know how the solution depends upon the various quan-
tities entering into the problem and what happens when some of
these become very large.

Here is an example going back to Newton. The motion of our
planetary system during a very short time interval may be described
as follows. Every celestial body is moving toward every other
celestial body with an acceleration directly proportional to the
mass of the other body and inversely proportional to the square of
its distance from that other body. To calculate on the basis of the
instantaneous behavior of the planets and their satellites their
actual motion means to solve the differential equations of celestial
mechanics. Generations of mathematicians have developed efficient
methods for this. Today the job can be done, with comparative ease,
by using modern computers. However, the computers cannot tell us
whether the solar system will preserve its general shape in the
distant future. To discuss this stability problem requires new
theoretical investigations. We add that such stability questions are
not at all as devoid of practical importance as they seem at first
glance (see page 73, second paragraph).

Since the creation of the calculus, analysis has penetrated prac-
tically all parts of mathematics, both because of its intrinsic rich-
ness and because of its manifold applications. Its subdivisions
acquired lives of their own and are often pursued for their own
sake. Experience shows, however, that the theory of differential
equations almost always utilizes the methods and ideas developed in
the seemingly remote parts of analysis, as well as in other branches
of mathematics. We shall mention briefly some disciplines in
analysis that are presently active and in which important results
have recently been achieved.

Functions of Complex Variables
It has long been recognized that certain parts of the calculus be-
come understandable and harmonious only if one extends the
system of ordinary "real" numbers to include "imaginary" and
"complex" numbers. For instance, this extension unifies the
theories of elementary functions like trigonometric functions,
logarithms, and exponentials. Complex analysis is the theory of
analytic functions of complex variables. These are functions that
can be represented by certain infinite series (power series). As an
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independent discipline, the theory of analytic functions developed
from the work of Cauchy, Riemann, and Weierstrass during the
nineteenth century. Riemann's work used physical and geometrical
imagery, yet it came as a surprise to many scientists that complex
analysis proved such a useful discipline for so many other fields of
knowledge (electrical engineering, fluid dynamics, and so on). In
recent years, the concept of analytic functions has proved useful at
the very foundation of high-energy physics. (See Wightman's article
in reference 7.)

Complex analysis illustrates the earlier statement about con-
fluence of fields. Several decades ago, complex function theory was
a flourishing field but with rigidly circumscribed boundaries. Mathe-
maticians working in this field communicated primarily among
themselves, and most of their work was of limited interest to other
mathematicians. Today, however, many experts in complex analysis
use tools from topology, geometry, and algebra, and their work in
turn is of interest to an ever-widening circle of other mathematicians.
This is especially true of the work in the theory of functions of
several complex variables, which has flourished during the past two
decades. (For fuller treatment of functions of complex variables,
see Bers' essay in reference 7.)

Harmonic Analysis
Harmonic analysis may be described as that part of analysis that
originated from the study of vibrating strings. In the eighteenth
century, Bernoulli tried to represent the motion of a vibrating
string as a superposition of so-called simple harmonic motions, that
is, motions described by trigonometric sine functions. The same
idea was used by Fourier in studying heat conduction, and the
resulting superpositions have come to be known as Fourier series.
Just as the sound produced by a musical instrument can be analyzed
into a superposition of pure tones, so physicists can describe many
complicated processes and states as a superposition of eigenfunc-
tionssolutions of differential equations corresponding in some
sense to pure tones. The mathematics of such a representation pro-
vides one of the basic tools for solving the differential equations of
mathematical physics and has been a source of interesting and diffi-
cult problems for generations of workers in pure mathematics. This
work and its generalizations comprise the field of harmonic analysis.

Another direction of research originating from the problem posed
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by Bernoulli consisted in refinement rather than in generalization.
Bernoulli asserted in effect that any function can be represented by
a Fourier series. The statement produced many controversies and,
in particular, led to the clarification of the concept of function, to
the first rigorous definition of the basic concept of integral, by Rie-
mann himself, and half a century later to the extension of this con-
cept by Lebesgue. A highly technical question in the theory of
Fourier series led Georg Cantor to the notion of set theory. The
very recent generalization of the concept of function, Schwartz's
distribution theory (see below), was also motivated at least in part
by the theory of Fourier series.

For all this manifold activity, the simplest and most naïve formu-
lation of Bernoulli's question remained open until 1965. The precise
formulation is necessarily technical: Does a Fourier series of every
function converge almost everywhere? The Russian mathematician
Kolrnogorov showed many years ago that the answer is no, if one
admits all functions for which a Fourier series can be formed, by
the classical rules. But only recently did Carleson prove that the
answer is yes, if the function is continuous (and even under certain
weaker hypotheses). This is one of many examples of old and
famous problems recently solved.

Functional Analysis
In this century, a new form of analysis has been developed in which
the functions of classical analysis are considered as points in a
function space and a geometric language is used. (See Schwartz's
and McShane's essays in reference 7.) The best-known example is
that of Hilbert space, which may be thought of as a space of func-
tions but can also be described as a space with infinitely many co-
ordinates in which distance is given by a formula analogous to
the one used in analytic geometry.

The principal objects of study are the so-called operators, which
are mappings of one function space into another. Problems in
functional analysis often arise from integral equations, differential
equations, and other parts of so-called classical analysis.

An important application of functional analysis, or more
specifically of Hilbert space, occurs in modern physics. Quantum
mechanics is, in fact, entirely based on the concept of Hilbert space.
This was first recognized at the very beginning of the theory. At
that time, Schrödinger and Heisenberg proposed two apparently
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different mathematical descriptions of the experimental observa-
tions. It turned out that their two descriptions were simply two
models of equivalent operators in an abstract Hilbert space. When
one compares the multitude of complex, comprehensive, and ac-
curate predications of quantum mechanics, in remarkable agree-
ment with experimental observations, with the highly abstract
mathematical concepts, initiated and developed originally for their
mathematical appeal alone but utilized later as the language of
physics, one never ceases to marvel at the power and the relevance
of mathematical abstractions.

Functional analysis is a very active field of research. Examples of
recent developments include the theory of representations, the
problem of approximations, and the use of topological methods.

Differential Equations
This part of analysis, which, among other things, pervades sizable
portions of mathematical physics and classical applied mathematics,
has been undergoing a process of almost explosive development
during the past decades. No report short of a handbook can do
justice to all developments; here we mention only a few highlights
and also indicate some of the many uses of differential equations
in applied fields.

Differential equations are divided into ordinary and partial. In
an ordinary differential equation the unknown is a function, or a
system of functions, of a single independent variable. In most appli-
cations this variable is time. In a partial differential equation the
unknown function, or the unknown functions, depends on several
variables. In applications these variables are usually coordinates
of a point in space, although one of them may be time. In geo-
metric language, to solve an ordinary differential equation means
to find a curve satisfying certain conditions; to solve a partial
differential equation means to find a surface or a higher dimen-
sional manifold satisfying certain conditions.

Differential equations are either linear or nonlinear. Instead of
giving a formal definition, we describe how such equations arise
in applications. Linear equations correspond to situations in which
the response of the system studied is proportional to the stimulus.
Thus the equations of linear elasticity describe a material in which
the deformations are proportional to the forces applied (Hooke's
law). A nonlinear equation describes a system for which the response
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depends on the stimulus in an arbitrary way. In many applications
one develops a linear theory as a first approximation, and one is

then forced to proceed to a nonlinear theory. For instance, differen-
tial equaticris describing the propagation of small disturbances in
air density ,ound waves) are linear, while the equations describing
the propagation of strong waves are nonlinear. From the mathemati-
cal point of view, the linear theory is always simpler.

The modern theory of ordinary differential equations includes
control theory, which is closely related to technical and engineering
applications. The fundamental problem is to control a system, such
as a satellite, by means of certain control mechanisms. It is often
desired to bring the system into a certain state (for example, to
guide a missile to a target) with a minimum amount of some quantity
(such as fuel). This is a problem in "Optimal Control Theory."
Although control theory has developed mainly during the past ten
years, it has attracted many research workers in both mathematics
and engineering; there have been over 400 publications in this
field, including a number of books. This is a field to which the
Russians, led by Pontryagin, originally a topologist, have con-
tributed a great deal.

One of the more classical developments in ordinary differential
equations is stability theory, on which much pioneering work was
done many years ago by Poincaré and Birkhoff. Many of the prob-
lems raised by them have recently been solved by mathematicians in
Russia (Kolmogorov, Arnold) and in this country (Moser).
Although the problem has its origin in astronomy (stability of
planetary orbits), the methods developed for its solution have appli-
cations to high-energy-accelerator design and to the study of charged
particles in magnetic fields, like that of the earth. A typical problem
is to ensure the containment of charged particles for long times in
the narrow tubular vacuum chambers of an accelerator without
hitting the wail. Some of the results of these studies have been
applied to the orbit theory of artificial satellites near the oblate

earth.
Of all the subfields of ordinary differential equations, the theory

of structural stability of vector fields (systems of differential
equations) on manifolds (i.e., surfaces and their generalization to
higher dimensions) is perhaps of interest to the greatest number of
mathematicians in other fields. A vector field is said to be struc-
turally stable if the general shape of the solution curves remains
unchanged if the vector field is perturbed slightly. In 1959, all
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structurally stable systems on ordinary surfaces were classified,
and it was proved that any vector field on such a manifold can be
approximated arbitrarily closely by a structurally stable one. But
Smale showed that this approximation theorem is not true on mani-
folds of dimension greater than three. Whether it holds on mani-
folds of dimension three is unknown at present. It is hoped that
continued work will lead to a general theory of the classification of
vector fields.

The recent theory of linear partial differential equations profited
from the creation of a new language, the language of "distributions"
or generalized functions introduced by L. Schwartz. An example of
a distribution is the famous delta function, 8(x), of Dirac, which
takes on the value 0 for all values of x --1- 0, but is such that

L+00oo
8(x)dx=1.

Mathematicians originally did not recognize this as a legitimate
function, but in the late 1940's Schwartz developed a theory of
generalized functions, or distributions, in which not only the Dirac
function but also much weirder entities occupy a legitimate place.

A new generation of mathematicians learned to look at partial
differential equations from the viewpoint of distributions, and they
have created a new branch of this old discipline that abounds in
beautiful and powerful results. Here is an example. Every linear
partial differential equation with constant coefficients, of the form
Lu = f, where f is any function or generalized function, has solu-
tions (Ehrenpreis-Malgrange). This theorem cannot be generalized
any further. If the equation does not have constant coefficients, a
solution need not exist. In fact, a few years ago, the experts were
surprised by Hans Lewy's discovery of a simple linear partial differ-
ential equation that has no solution whatsoever.

Why was this surprising? Because traditionally mathematicians
took their partial differential equations from physics, and the
existence of the solution was more or less assured by so-called
physical intuition. The task of the mathematician was to justify the
intuition by a rigorous proof and to produce a method for actually
finding the solution. This work is certainly nearing completion as
far as linear problems are concerned.

But nature is not always linear. Compressible fluid flow, viscous
flow, magnetohydrodynamics and plasma physics, general relativity,
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and other disciplines challenge the mathematicians to solve non-
linear problems. The theory of nonlinear partial differential
equations is at present a very active discipline. Important break-
throughs have been achieved, but an immense amount of work
remains to be done.

Much of the modern work in partial differential equations looks
highly esoteric, and only a few years ago such work would have been
considered of no interest for applications, where one wants a solu-
tion expressed in a workable form, say by a sufficiently simple
formula. The advent of the modern computing machines has
changed this. If a problem involving a differential equation is
sufficiently understood theoretically, then, in principle at least, a
numerical solution can be obtained on a machine. If the mathe-
matics of the problem is not understood, then the biggest machine
and an unlimited number of machine-hours may fail to yield a
solution.

Another example from the theory of partial differential equations
is the index theorem. Suppose we want to solve a linear equation

Lu = f,

where L stands for a complicated operator that may involve differ-
entiations, integrations, etc., u is the unknown, which may be a set
of numbers, a function, or a set of functions, and f consists of given
data. In general, there will be a solution only if f satisfies a certain
number of conditions. Let us assume that this number is finite, and
let us call it A. Also, if the problem is solvable at all, the solution
may not be unique; let us assume that the solution depends on B
parameters. The number A B is called the index of the problem.

The simplest example is a system of n linear algebraic equations
in m unknowns. It can easily be shown that in this case the index
A B is equal to n m. The index problem makes sense also when
the equations are differential equations, but until very recently it
could be solved only in relatively simple cases. This difficult prob-
lem was generalized, attacked, and solved about three years ago by
Atiyah and Singer. The resulting formula expresses the difference
A B in terms of certain topological invariants of the region and
of the equations considered. The work involved not only some of
the most refined recent tools of analysis but also results and methods
from differential geometry and topology. It also turned out that
this index formula contained as special cases several important

L
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results in other fields of mathematics and their generalizations. It
is completely impossible to assign this beautiful achievement to any
one mathematical discipline. It belongs to analysis as much as to
geometry and topology, and it has strong connections with algebra.

Probability Theory
The theory of probability, which arose during the sixteenth and
seventeenth centuries out of rather frivolous questions of computing
odds in gambling, has had an explosive development during the
past few decades. On the one hand, this theory, which deals with
"mathematics of chance," has been put on firm foundations, -whichmakes it into a science as deductive and as rigorous as geometry
and algebra. On the other hand, its range of applications has grown
immensely. (See Kac's essay in reference 7 for an extended discus-
sion of probability theory.)

Some 40 years ago the calculus of probability consisted essentially
of a collection of disconnected problems. Under the influence of
Gauss, undue importance was attached to the so-called theory of
errors, a topic now practically forgotten. Instead, probability has
moved in new directions by developing the theory of stochastic
processes and the modern fluctuation theory. The unexpected re-
sults of these theories have introduced entirely new viewpoints and
attitudes and have also opened new avenues of research. However,
for the purposes of this report it is more important to stress that
these developments have broken the traditional isolation of prob-
ability theory, with the result that it now plays an important role
in a surprising number of mathematical disciplines. Examples of
these disciplines are measure theory, function spaces, classical poten-
tial theory, Hilbert spaces, information theory, and partial differen-
tial equations. This list could be extended, but it should suffice to
add that probabilistic methods have been used for proofs in logic.
Some recent work promises to establish further new connections
between logic and probability.

The same intense and fruitful flow of ideas can be observed be-
tween mathematical probability and various applications. Important
parts of probability theory were stimulated by technological prob-
lems (information and prediction theory, theory of noise), and
modern probability is playing an important role in industry and in
quality control and reliability engineering, as well as in natural
and social sciences. In addition, probability forms the basis of the
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modern theory of statistical inference (see Kiefer's essay in refer-
ence 7).

GEO METRY

Three turning points in the history of geometry determined the
course of mathematics and exerted influences beyond the boundaries
of mathematics and even of science in general. The first occurred in
Greece, when the collection of geometric facts and rules assembled
in the ancient civilizations of the East was transformed into a
deductive science. This event signified the birth of deductive reason-
ing. The second event was the discovery of analytic geometry by
Fermat and Descartes, who showed how points can be represented
by pairs or triples of numbers and geometric figures by algebraic
equations. This discovery bridged the chasm between geometric
and arithmetic concepts that dominated Greek mathematics and
prepared for the invention of calculus. The third event was the dis-
covery of non-Euclidean geometry by Gauss, Bolyai, and Lobachev-
sky (and in a somewhat different context by Riemann). This showed
that the axioms of Euclid are not self-evident truths as had been
assumed for centuries, and that consistent geometries built on other
axioms are possible (see Coxeter's essay in reference 7). The results
of this discovery for human thought were stupendous. Only the
consequences for mathematics are of interest to us here. The
axiomatic method that pervades all modern mathematics is one of
these. So, in a certain sense, is mathematical logic and the use of
formal languages. So is, finally, the whole proliferation of various
geometries in which one begins by assuming only some of the
familiar properties of the space of everyday experience and then
proceeds to develop their logical consequences.

It would seem that by permitting itself this unlimited freedom
and by cutting, as it were, the umbilical cord tying geometry to its
early experimental origins, this science would lose its connection
with reality and would cease to be a tool of science and technology.
It is well known that the opposite has taken /lace.

We will review briefly some subdivisions of modern geometry.

Algebraic Geometry
Today, most high school students get a taste of this discipline when
they study conics ,..ilipses, parabolas, and hyperbolas). These
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curves, known to the ancient Greeks, are geometric embodiments
of simple algebraic equations. An ellipse, for instance, consists of
all points in the plane whose coordinates x and y satisfy an equation
of the form (x/ a)2 (y /b)2 = 1, where a and b are two numbers.

Algebraic geometry is concerned with solutions of systems of
algebraic equations using a geometric language. A basic aim is to
achieve a full understanding of the totality of solutions. In order
to obtain this, it is necessary to extend the scope of the algebra and
the geometry involved. Modern algebraic geometry studies equations
whose coefficients are not only ordinary real or complex numbers,
but also elements of more general fields or rings. It considers the
geometric configurations defined by such equations not only in the
plane or in ordinary three-dimensional space but also in higher-
dimensional spaces.

One of the attractions of algebraic geometry is its intimate con-
nection with number theory; intricate algebraic and geometric
constructions are sometimes used to obtain number-theoretic re-
sults.* Algebraic geometry is now flourishing and attracting some
of the most talented young men entering mathematics. We mention
two recent developments.

An outstanding problem was whether, given kn independent
algebraic equations in k unknowns, it is possible to represent all
solutions of this system by a smooth geometric figure. (More pre-
cisely, can one transform the variety defined by this system into a
smooth figure by using so-called birational transformations?) The
affirmative answer for n = 1 was found in the nineteenth century.
For n = 2 the first purely algebraic proof for systems with coeffi-
cients in the complex numbers was given by Zariski about 30 years
ago. Ten years later, he solved the case n = 3. Recently, the gen-
eral case (any n) was settled affirmatively by Hironaka.

Another achievement of a quite different nature is the systematic
rebuilding of the foundation of algebraic geometry now led by
Grothendieck in France. His work, which also leads to solutions of
important concrete problems, has influenced many young mathe-
maticians, including those working in other fields.

*For instance, "Fermat's last theorem" (a statement made in the seventeenth
century and thus far proved only in certain special cases) can be interpreted asfollows: let n be an integer greater than 2 and consider the algebraic surface
xn yn = zn in the x,y,z space; are there points on this surface with integral
coordinates other than the three points (0, 0, 0), (1, 0, 1), (0, 1, 1)? Fermat
claimed there are not.
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Differential Geometry

Just as the analytic geometry of Fermat and Descartes and its sub-
sequent development into algebraic geometry may be described as
applications of algebra to geometry, so differential geometry may
be described as the application of calculus to geometry. It reached
maturity only when mathematicians learned to live in spaces of
more than three dimensions. At this level of abstraction one can-
not draw figures but must work with formulas, and the formulas
themselves become so complicated that the invention of a con-
venient notation is a major task. This task was accomplished by
Italian geometers toward the turn of the nineteenth century. The
"tensor analysis" or "Ricci calculus" created by them seemed at
that time an example of monastic mathematics at its most esoteric.
But when Einstein was searching for a mathematical language to
express ideas of general relativity, he was led, after much inner
resistance, as he himself stated, to tensor analysis.

The unexpected application of differential geometry in relativity
led to a flowering of this discipline that continues today. The
original work in differential geometry was primarily "local"; one
studied a limited, usually very small, part of the space under con-
sideration. In modern differential geometry one studies "global"
properties, that is, properties of the space as a whole, and one is
particularly interested in the connection between local and global
properties.

Point Set Topology
This branch of geometry is first of all the study of very general
geometric figures in ordinary space. Classical geometry, from the
Greeks until the nineteenth century, confined its studies to rela-
tively simple figuresstraight lines, triangles, circles, ellipses, and
the like. Set theory led mathematicians to consider also "wild"
figurescurves without tangents, curves that pass through every
point in a square (so-called Peano curves), and so forth. When this
kind of mathematics was born, some mathematicians, including
even as great a man as Poincaré, dismissed it as a study of freaks.
It appeared, however, that the freaks that Poincaré thought were
invented by people looking for ugliness appear by themselves in
connection with beautiful classical objects (this was observed in
the theory of so-called Kleinian groups initiated by Poincaré him-
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self!) and that further investigations reveal beauty and harmony in
what first appeared to be a world of chaos.

Another aspect of point set topology is the logical analysis of our
most basic ideas about space.

Point set topology played a special role in the development of
mathematics in this country, since the unique rledagogical work of
R. L. Moore (University of Texas), which is responsible directly or
indirectly for so much research activity in mathematics, has been
centered about point set topology. (For further information about
point set topology, we refer to the essay by Bing in reference 7.)

Algebraic Topology
Topology is concerned with the study of shapes of geometric figures
and with qualitative properties of continuous transformations be-
tween such figures. The original names of the discipline were
analysis situs and later combinatorial topology. In studying quali-
tative aspects of geometry, one considered first figures composed of
the simplest conceivable building blockspoints, straight segments,
triangles, tetrahedra, for example. Brouwer, one of the founders of
topology, named these building blocks "simplexes." Certain basic
figures studied in algebraic topology are called "complexes." They
are composed of simplexes in such a way that two simplexes that
touch each other have a whole face in common. In studying com-
plexes one pays no attention to their size or shape but only to the
way the various simplexes are combined. Hence the name "combi-
natorial topology." It was changed to "algebraic topology" when it
became apparent that the progress of the discipline depended
essentially on the use of sophisticated algebraic tools. Today there
is available a variety of algebraic aids for the study of topology. In
fact, some parts of topology have been completely reduced to alge-
bra, and although the resulting algebraic problems have not been
solved completely, they are theoretically solvable in the sense that
their effective computability has been established.

We shall describe one basic problem, on the boundary between
point set topology and algebraic topology. Does the method of repre-
senting a geometric figure as a complex really capture all the geo-
metric properties we want to capture? More precisely, suppose we
are given two complexes that are topologically equivalent, that is,
such that one can establish a one-to-one correspondence between
their points in which nearby points in one complex correspond to
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nearby points in the other. Can one then subdivide the complexes
into finer ones in such a way that the resulting subdivided com-
plexes are "combinatorially equivalent," so that, under an appro-
priate one-to-one correspondence, vertices of a simplex in one
correspond to vertices of a simplex in the other?

The answer may depend on the dimension in which one operates.
It is affirmative for dimensions 1, 2, and 3, but Milnor proved about
five years ago that it is, in general, negative. On the other hand, the
answer is probably affirmative for complexes that have a certain
smoothness property, in the technical language for manifolds. (The
affirmative answer for the case of three-dimensional manifolds was
found by Moise in 1952. His proof was ingenious but elementary.
The affirmative answer for certain manifolds of dimension at least 5
has been obtained very recently by the 26-year-old mathematician
Sullivan. He draws on many parts of the machinery developed by
topologists during the past 20 years. The case of four dimensions
appears today to be completely inaccessible.)

One of the most important applications of topology is to analysis,
in particular to solving differential equations. One link between
topology and analysis is established by the celebrated "Morse theory"
of critical points. The recent extension of this theory to infinite di-
mensional spaces (by Smale and others) promises to be of signifi-
cance for solving nonlinear partial differential equations.

Differential Topology
In algebraic topology one considers complexes, that is, geometric
figures that can be decomposed into simple building blocks, sim-
plexes. Another approach is to consider figures that can be described,
near every point, by a system of coordinates, like the ones used in
analytic geometry. An example is the surface of a sphere on which
points are located by means of the geographic coordinates, latitude
and longitude. It is in general impossible to use one system of coordi-
nates for the whole figure. In the case of geographic coordinates on
the sphere, for instance, there are "singularities" at the two poles.
It is required, however, that we should be able to cover the whole
figure by patches in which coordinates can be defined; and it is re-
quired that the formulas describing the transition from one coordi-
nate system to another should involve only smooth (differentiable)
functions. If a geometric figure can be covered by such coordinate
patches, it is called a smooth manifold; if a system of coordinate
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patches has been defined, we say that we have defined on our figurea differentiable structure.

It had been believed for a long time that whether one doestopology of well-behaved figures by complexes or by differentiablemanifolds is a matter of technical convenience. It was believed, forinstance, that there is essentially only one -way in which a differ-entiable structure can be defined on a reasonable figure. The advan-tage of the approach through complexes lay in the possibility ofusing algebra. The advantages of the approach through manifoldslay in the possibility of using analysis, differentiation, and integra-tion. The celebrated theorems of de Rham, which showed that cer-tain numbers characterizing the shape of a figure from the point ofview of algebraic topology could also be arrived at by integral cal-culus, were an early triumph of this approach.But differential topology as a fully independent discipline wasborn only in 1952, with Milnor's remarkable discovery that even ona figure as simple from the topological point of view as the seven-dimensional sphere, there is more than one way of defining adifferentiable structure. This discovery shared the fate of otherfundamental "counterexamples." At first it seemed that the so-called"Milnor spheres" were freaks that their discoverer was ingeniousenough to construct, but which could not possibly occur in a reason-able mathematical context. Recently, however, it was discovered thatMilnor spheres appear inevitably in the theory of functions of sev-eral complex variables. Also, far from being ugly and chaotic, theexistence of different differentiable structures reveals a world ofhidden harmony and symmetry.
Differential topology has now become one of the most activemathematical disciplines. It is, more than any other branch oftopology, connected with differential geometry, the theory of differ-ential equations, and algebraic geometry. In some sense the appear-ance of differential topology represents the return of topology to itsorigins in problems of mechanics and differential equations. Hereagain the unifying tendencies of contemporary mathematics areclearly visible. (An account of the evolution of differential topologywill be found in the essay by Gleason in reference 7.)

Lie Groups

We mentioned earlier that a group is an algebraic entity describingsymmetry. In the theory of Lie groups (so named after the nine-
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teenth-century Norwegian mathematician, Sophus Lie) geometry,
analysis, and algebra are inseparably joined. Lie groups are groups
in the ordinary sense that have the added feature of being param-
etuized, at least locally, by real numbers. (An example is the
totality of all displacements of a rigid body. This is a group, since
a succession of displacements is again a displacement and every
displacement can be canceled by another. A displacement of a rigid
body can be described by six numbers, three to tell how some fixed
point in the body has been translated and three to tell how the
body has been rotated about this point. Thus the group of rigid
motions in ordinary space is a six-parameter Lie group.) This param-
eterization has immediate and far-reaching consequences, because
techniques from analysis become applicable and Lie's original con-
cept, the infinitesimal group (now called Lie algebra), assumes a
central place in the theory. Geometric objects led naturally to a
rich supply of examples, and much effort was made to classify all
Lie groups in terms of these examples.

Lie groups play a dominating and unifying role in modern
mathematics; they have stimulated significant research in algebra
and topology, and such widely different fields as finite-group theory
and differential geometry are today strongly influenced by Lie
group theory. The "representation theory" of Lie groups, which on
occasions has been the source of inspiration of important discoveries
in physics, has also suggested entirely new directions in analysis,
thereby incorporating and revitalizing large parts of classical
analysis.
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Fields of mathematical science outside the core are of various kinds.
Both computer science and statistics have dual sources of identity
and intellectual force, only one of which is mathematical; hence
they are more accurately described as partly mathematical sciences.
These two already apply to almost as wide a variety of activities as
does mathematics itself.

Computer science is both a mathematical science and something
else. In its present form it could not exist without mathematics. But
it would be utterly unproductive without a piece of machinery
the computer, both as we have access to it at the moment and as
we can envisage it in the future.

Modern statistics could not operate without mathematics, espe-
cially without the theory of probability. Equally, it could not exist
without the challenge of inference in the face of uncertainty and the
stimulus of the quantitative aspects of the scientific method. Like
computer science, statistics is both a mathematical science and
something else.

At the other extreme are fieldsmathematical economics, mathe-
matical psychology, mathematical linguistics, among othersthat
deal with the mathematical aspects of rather specific areas.

At an intermediate level of breadth and identity stand fields
that have derived their nature from some area of application,
usually a quite broad one. These fields have initially chosen their
tools to meet the application area's problems but have grown and
developed far enough to have a mathematical character of their
own, thereby gaining a certain independence of existence and

84
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breadth of application they could not otherwise have had. The
outstanding example is physical mathematics, or classical applied
mathematics, which has grown out of the mathematics of classical
physics to a point where it deals with a wide variety of applications
of mathematical analysis. A similarly intermediate field is today
growing rapidly in an area stimulated by applications to pure and
applied economics and to management and the conduct of oper-
ations of all kindsbusiness, governmental, and military. As yet
there is little agreement about this field's name, but its concentra-
tion on problems of optimizing any or all of allocation, control,
and decision is so evident that we can label it accordingly.

FLUID DYNAMICS: AN EXAMPLE OF
PHYSICAL MATHEMATICS

To illustrate the nature of physical mathematics (classical applied
mathematics), we shall describe in some detail one of its typical
and central subdivisionsthe mathematical theory of fluid motion.
The description will be followed by a few general comments on
related areas.

Both liquids and gases (neutral or ionized) are fluids. The study
of fluid motion is, strictly speaking, a part of physics. It has been
left, however, for many decades now, largely in the care of applied
mathematicians, engineers, astrophysicists, and geophysicists (in-
cluding meteorologists and oceanographers). Applied mathematics
has found in the study of fluid motion some of its most spectacular
triumphs and also has suffered some of its, hopefully temporary,
notable defeats.

Attempts to describe the motion of fluids mathematically are
almost as old as mathematical analysis. The early history of fluid
dynamics is associated with names such as Bernoulli, Euler, and
D'Alembert. Classical fluid dynamics led to some of the most im-
portant developments in mathematics and to techniques and ideas
that have found many other applications. Riemann contributed to
the basic theory of propagation of strong compression waves. His
ideas led to the development of the notion of "characteristics,"
which greatly influenced the theory of partial differential equations.
Much of Hadamard's work was concerned with wave propagation.
All this work laid the basis for many of the recent developments in
the theory of supersonic flow and shock waves, which occur on the
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earth (sonic boom associated with supersonic aircraft) as well as
in the stars (novas and supernovas).

Much of the classical fluid dynamics of incompressible flow
seemed originally to be completely useless as a model for physical
reality. For instance, D'Alembert proved that a body moving
through fluid experiences no drag. Of course, D'Alembert's deriva-
tion neglected viscosity (the tendency of one part of a fluid to pull
adjacent parts along with it); but his result was contrary to experi-
ence even in cases where viscosity effects seemed to be very insig-
nificant.

Fluid-flow theories applicable to physical reality appeared only
in the nineteenth and early twentieth centuries, largely as a response
to the needs of aeronautics. A major achievement was Prandtl's
theory of the boundary layer, which showed in which cases one can
use classical fluid dynamics to obtain physically valid results, and
how in such cases the viscosity effects are limited to a small layer of
fluid next to a moving body (whence the name "boundary layer").
Boundary-layer theory led, by the way, to important developments
in the general theory ot differential equations.

Compressibility of air was neglected in aerodynamics that proved
sufficient for the engineering needs of the period up to World War
II. Interest in high-speed flight required that compressibility be
taken into account and that the essentially nonlinear theory of gas
flow be faced. While certain mathematical points in that theory are
still unexplained, today sufficient theoretical understanding is avail-
able for practical needs. The "sound barrier" turned out to be
largely imaginary, but the high altitudes achieved in rucket flight
necessitated the creation of a new type of fluid dynamics, the dy-
namics of rarefied gases. This theory contributed to the successful
solution of the re-entry problem for earth satellites.

A young and very active discipline of modern fluid dynamics is
magnetohydrodynamics, which describes the interaction between
electromagnetic fields and conducting liquids or ionized gases
(plasmas) . We can hope that this subject will contribute as much
to the future course of mathematics as did the individual subjects
of electromagnetic theory, fluid dynamics, and statistical mechanics.
Magnetohydrodynamics has applications to astrophysics (stellar
atmospheres and interstellar matter), to the search for a controlled
thermonuclear reaction, and to a promising use of ionized-gas
"armatures" in generating electric power. The striking spiral struc-
ture of many galaxies (including our own) can now be understood
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in terms of magnetohydrodynamics and statistical dynamics of
stellar systems. Here the very old subject of self-gravitating fluids,
studied by Mac Laurin, Jacobi, Riemann, and Dedekind in another
connection, plays a predominant role.

The behavior of stellar systems and rarefied plasmas has been
known to be governed by a type of "collisionless Boltzmann
equation" and to exhibit "collective behavior." On a still larger
scale, the distribution of matter in the universe is often treated in
terms of fluids governed by Einstein's general theory of relativity.
The question of the existence of gravitational radiation offers chal-
lenging nonlinear partial differential equations begging for solu-
tion.

In recent years, there has been a great upsurge of the study of
fluid mechanics for the purpose of describing phenomena in geo-
physics (meteorology and oceanography), where the rotation of the
earth often plays an essential role. Much of the work was done by
applied mathematicians; Von Neumann was among the pioneers in
the use of numerical methods for weather prediction (see An
Example from the Environmental Sciences: Numerical Weather
Prediction, page 108). Problems of hydrodynamic stability, on which
work is still flourishing, occur in a variety of ways.

Yet some problems in fluid dynamics, which are almost as old as
the science itself, still resist all efforts at mathematical treatment.
An outstanding example is turbulence, a phenomenon easily ob-
served by anybody watching the disintegration of the smoke jet
from a factory chimney or from a cigarette. Although some of the
best minds in physics and mathematics have applied themselves to
this problem and have achieved some partial successes, there is at
the present little hope for a satisfactory solution in the near future.
It is now clear that the existing studies and the still unresolved
problems both relate to the broader area of nonlinear random
processes.

At the same time, the theory of the fundamental partial differ-
ential equations governing the motion of incompressible viscous

flow has not been fully developed. It remains a challenging and
interesting problem to pure mathematicians and a source of much
current stimulation for work.

As mentioned above, there is a similarity between the behavior of
stellar systems and that of rarefied plasmas in exhibiting collective
behavior. The similarity is not only in the basic ideas but also, sur-
prisingly, in the details. Concepts used in fluid mechanics are also

,
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useful when continuum mechanics deals with other material
elastic solids, plastic solids, and bodies exhibiting both flow and
elastic properties. The study of the basic laws of continuum
mechanics depends heavily on the concepts of "covariance" (i.e.,
the assertion that physical laws would remain in the same form no
matter what observer is making the description).

Indeed, the concepts and methods that originate in one branch
of applied mathematics arc often applicable to other branches. Once
the theory is put into mathematical form, even in a form not yet
deserving serious interest of core mathematics, it could be of basic
importance to other branches of applied mathematics. Equilibrium,
stability and instability, wave motion, linear versus nonlinear proc-
esses, reversible versus irreversible processes, entropyand one
can name many moreare certainly concepts whose applications
are general. The mathematical theory of economics makes use of
several of them. The new science of information theory, with its
fascinating coding theorems and important applications to practical
problems in communication engineering, also uses the concept of
entropy.

These observations demonstrate that much of classical applied
mathematics has a tendency to merge into a coherent whole across
traditional scientific disciplines, adding to the strength and useful-
ness of the entire area of activity.

STATISTICS

Statisticians easily recognize other statisticians as such, though they
are often surprised by the fields in which they work and the tools
that they use. It is now almost three quarters of a century since
Karl Pearson turned from graphical mechanics to the application
of algebra and differential equations to problems arising in the
analysis of experimental and observational data. The mathemati-
cal theory of probability, now considered part of core mathematics,
has applications to the "adjustment of data," first in surveying and
astronomy and then in many other fields, going back to the work
of Gauss and Laplace a century earlier.

A variety of traditions have merged in contemporary statistics,
not only the application of the theory of probability and the more
quantitative aspects of scientific method but the numerical skills
of the economist and the meteorologist and the data-handling skills
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that have been served by one form Qr another of automation since
the invention by Hollerith of the punched-card machine in the last.
century. Today, statisticians are concerned with how it would seem
we might well make inferences, how we do make inferences, and
how we might and do collect, process, and aigest data in a wide
variety of fields.

Karl Pearson's willingness to attack the dimensions of crabs, the
inheritance of intelligence, and the mechanisms of evolution with
mathematical techniques, however, signaled the opening of a new
era, one in which new problems and mathematical theories have
shared responsibility for intellectual stimulation, and where, in
one field after another, the statistician has done much to introduce
workers in that field to new ideas and new ways of thinking as well
as to new techniques. The basic ideas of quantitative scientific
method, of uncertainty, and of elementary mathematical models
have been brought into many fields by statisticians. Agriculture,
biology, and medicine; insurance and actuarial techniques; indus-
trial production and market research; psychology, sociology, and
anthropology; all have benefited.

Once statistics was thought of as confined to the study and
manipulation of large masses of data. Such problems are still among
the most challenging, but the problems of doing a good job of con-
verting three or five or ten numbers into suitably qualified conclu-
sions are today at least equally important. Individuals, corporate
bodies, governments, scientists, engineers, economistsall use a
wide variety of statistical techniques to assess "what the data say"
and thus to guide them in their deliberations and actions. Wherever
the evidence is less than complete or bears only indirectly on the
point at issuein truth, almost everywherethere is a place for
statistics in untangling the data and assessing the conclusion.

Karl Pearson, "Student" (W. S. Gossett), and R. A. Fisher took
leading parts in the early development of a mathematical statistics
of wide application. During the years between the two world wars,
new statistical methods and new methods for arranging experiments
made major contributions to the development of agricultural tech-
nology. (One of the three leaders of the first American seminar on
R. A. Fisher's analysis of variance was later president of the Pioneer
Hybrid Corn Breeding Company.) Statistical techniques made our
agricultural progress possible, while the needs of agricultural ex-
perimentation called whole areas of statistics into existence.

Beginning in the early 1920's, farsighted men at Bell Telephone
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Laboratories recognized the importance of statistics' potential in
industrial production. Walter Shewhart founded and developed the
theory of statistical quality control, and Harold Dodge led in the
development of sampling schemes for inspecting mass-produced
items. Both of these techniques are sometimes given major credit
for significant contributions to the success of the Allied production
effort in World War H. In particular, statistical quality control was
a major factor in the early success of the plutonium-production
process at Hanford. After the war, the application of statistical
techniques to the experimental improvement of industrial produc-
tion processes made outstanding progress, particularly in connection
with chemical processes.

Stimulated by Student and Shewhart, J. Neyman and E. S. Pear-
son developed the first of the modern mathematical theories of
formally optimized inference in the latter 1930's. During the same
years and in the decade that followed, the mathematical theory of
sampling developed to meet the needs of studying large groups of
people, farms, business firms, and many other things by observing
relatively small samples. The sample survey thus became effective,
efficient, and irreplaceable.

Wartime needs for even more efficient inspection led Abraham
Wald, once a pure mathematician, in one sleepless night, to the
basic theory of sequential analysis and seeded his later work on
statistical decision theory (to which a brief introduction is given in
the essay by Kiefer in reference 7). The needs of a variety of prob-
lems in geophysics (waves on the ocean, earthquakes, gusts that
disturb airplanes) and in engineering (e.g., tracking radars) de-
manded new tools to isolate phenomena tagged by their frequencies
of oscillation. Statistical spectrum analysis developed rapidly,
spreading into a wide range of applications, including recent con-
gressional inquiries into the proper adjustment of economic series,
such as unemployment, for the season of the year.

The implications of psychological and educational testing have
often been discussed and will be discussed many times again,
demonstrating the ever-increasing importance of these techniques
in our lives. The selection of test material and the study of indi-
vidual and interrelated behavior of tests has had to be carried out
in a statistical way, demanding and receiving the development of
new statistical techniques.

Qualitative studies of a national economy and of the economic
environment of single firms share the difficulties of (1) complexities
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requiring explicit treatment of many variables and (2) limitation
of available data almost to the point where there are not enough
to obtain meaningful answers. As a result, econometricians have
developed, and have stimulated others to develop, another broad
area of statistical techniqueeconometrics. For instance, important
issues in the recent Federal Communications Commission hearing
about telephone rates came down to questions of statistical tech-
nique and statistical appropriateness.

Most areas of biological and medical research have come to de-
pend on statistical techniques. Experimenters routinely use
methods that grew up in agricultural research, supplemented by
special statistical techniques appropriate to the effectiveness of
drugs and poisons. The study of epidemic and occupational disease
calls on other techniques and poses very difficult problems.

The study of medical and surgical performance is an even more
difficult field. The recent national study of one of the anesthetics
most used for surgery fortunately showed certain specific suspicions
to be unfounded. Yet it turned up suggestive differences between
postoperative death rates that may prove to be associated with the
anesthetics used. These apparent differences could not have been
seen without the use of statistical techniques not in existence when
the study began; the untangling of their true nature and causes
will require both better statistical techniques and better data, each
of which stimulates the other.

The arrival of modern electronic computation opened many
new opportunities in almost every field of statistics. Routine sea-
sonal adjustment of economic time series no longer calls for an
expert; a dollar's worth of computer time does it. The periods of
the natural vibrations of the earth would never have been measured
without computer processing, and we would have known much less
about the earth's interior. Yet most of the large-scale challenges
involved in harnessing modern computing systems to the effective
analysis of data have hardly been tackled.

Just as it is still a methodological science, a computational sci-
ence, and a behavioral science, statistics continues to be a mathe-
matical science. Its health depends on effective exchanges of results
and problems with workers in a wide variety of fields. The increas-
ing variety of applications has increased the needs for the inven-
tion of new techniques appropriate to new problems. Throughout
the areas of statistical technique that have been developed over the
last four or five decades there are great needs for modernization.
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There is a need to develop probabilistic models for new phenomena,
to study the properties of these models, and to investigate statistical
procedures appropriate for diem. Most formal optimization of
statistical methods has been carried out for classes of distributions
that are too narrow (normal or Gaussian) or too broad (all con-
tinuous distributions) to correspond satisfactorily to practice. The
impact of the computer not only on what is possible but also on
what is reasonable in statistical techniques has been only barely
thought about and only in very special cases. Communicating results
to people can be much more effective once we understand how to
use computer-produced graphs and pictures. Adequate treatment
for the nonexperimental observations of behavioral science and
medicine requires rethinking of the ideas whose formalizations
underlie statistical techniques. These are but four of many direc-
tions in which progress is being demanded.

COMPUTER SCIENCE

Automatic high-speed computing is scarcely 20 years old. Neverthe-
less, it already constitutes one of the nation's most valuable scientific
and economic resources.

Until automatic electronic digital computers first became com-
mercially available around 1950, most persons took at least 10 sec-
onds to multiply two moderately large numbers. With today's elec-
tronic computers, the same multiplication can be done nearly
10,000,000 times faster. In comparison, the speedup in travel be-
tween walking and going by jet is by a factor of approximately 100,
while that in communication between sound and radio waves is by
a factor of approximately 1,000,000. These changes in rates of
transportation and communication have completely remade the
world. The even greater speedups in information processing are
remaking our world again. It will be many years before our capacity
to exploit the new computers fully will catch up with even their
present capabilities. Meanwhile, rapid advances in speed and in the
capacity of computers to store information continue.

The development of computing is accelerating the penetration
of mathematics into old and new fields of human endeavor. In fact,
the original purpose for developing computers was the numerical
solution of mathematical problems. The success achieved in this
direction has been phenomenal. Calculations that required years
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of effort by teams of people can now be done in a matter of minutes.
Mathematical problems that were thought inaccessible to effective
numerical treatment are now solved as a matter of routine. During
any rocket launch, for instance, dozens of nonlinear ordinary
differential equations are being solved in a completely automatic
manner.

Numerical analysis, the branch of mathematics concerned with
the invention and evaluation of methods for mathematical calcula-
tion, has been revitalized by the advent of the computer but has so
far been unable to keep pace with technological developments. (See
Davis' essay in reference 7.) Computers vastly increased the im-
portance of parts of numerical analysis and made others completely
obsolete. Carrying out a stupendous number of arithmetic oper-
ations in solving a single problem introduced a host of difficulties
associated with the limited precision and range of computer num-
bers. (See the essay by Forsythe in reference 7.) Meeting these diffi-
culties has led to an array of new and powerful algorithms for solv-

ing mathematical problems.
It is important to realize the variety of fields in which computing

has become an important tool. One of these is mathematics, but this
is a relatively minor fraction of the total volume of computing done
today. Others include experimental and theoretical physics, business-

data processing, economic planning, library work, engineering de-
sign (from transportation systems to computers themselves), edu-

cation, inventory management, police operations, space science,
musical performance, and content analyses of documents. One can
speak without reservations of a computerization of our culture that
is already broader, though less deep, than its mathematization.

The modern computer can do many things. The logical possibil-
ity of building a universal computing machine that in principle can

do anything any computing machine can do was first recognized, as

a theorem in mathematical logic, by A. M. Turing. This discovery

influenced the work of the mathematician Von Neumann, who
contributed the crucially important suggestion that computers
should store their instructions together with their data.

The practical importance of computing to our society can be
judged from the direct annual cost to the federal government of
acquiring and operating electronic computers in 1967. It was in the

range of $2 billion. (Source: The New York Times, 25 January 1966,

p. 21, quoting the President's budget message.)
The near-universality of a modern computer means that it can
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perform almost any manipulation of symbols. The breathtaking
future perspectives to which this may someday lead are described
in an essay by J. T. Schwartz on prospects of computer science.%

In particular, computers can be used for direct simulation of
complicated technological, natural, and social phenomena, where
computer instructions play the role of formulas in setting up a
formal model. Such models are as truly mathematical as those ex-
pressed in formulas. Lists of computer instructions can be long and
interrelated in complicated ways and still be executable. If many
details must be treated, examples of behavior can be obtained by
direct simulation when general results cannot be obtained from
similarly complicated lists of mathematical formulas. Examples of
problems that have been treated by direct simulation include high-
way traffic control, the design of telephone networks, and the design
of concrete shields for nuclear reactors.

Just as zoology is the study of animals and animal behavior, so
computer science is the study of computers and computation. Three
aspects are currently of outstanding importance:

1. The design and analysis of computer hardwarethe com-
ponents and total electronic and mechanical systems that comprise
computers;

2. The design and analysis of computer softwarethe basic
languages and resident programs essential to convert bare hardware
into productive computing systems, including control programs,
compilers, and time-sharing executives;

a. The methodology of solving problems with computersthose
techniques that are common to solving broad classes of problems, as
opposed to the preparation of individual programs to solve single
problems. One of these techniques is the appropriate representation
of complex information.

Today, computer science is, among other things, a mathematical
science. As Professor Allen Newell describes it in his memorandum
tO COSRIMS:

Computer science shares with mathematics a concern with formalism and a
concern with the manipulation of symbols. It also shares with mathematics
the role of handmaiden to all of science and technology. It shares with elec-
trical engineering the concern with the design and construction of informa-
tion processing systems that accomplish ends.

It shares with all of engineering a concern with the process of design,
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considered as an intellectual endeavor. It shares with linguistics a concern
with language and communication. It shares with psychology a special con-
cern with forms of information processing that result in intelligent behavior,
broadly viewed. It shares with the library sciences a concern with how to
store and retrieve large amounts of information, either as documents or as
fact& It has both theoretical aspects, as in the study of automata, and ex-
perimental ones, as in the discovery of new types of systems dirough pro-
gramming them and exploring their behavior. All of these shared problems
with other parts of science and technology imply that the future status of
computer science is still indeterminate. It may permanently become one of
the mathematical sciences. It may become an autonomous science, such as
geology. The result is genuinely in doubt, because "science" is a social con-
struct, shaped as much by social forces as by anything intrinsic to its subject
matter.

Lying as it 6oes across the research fields of mathematics, elec-
tronic engineering, linguistics, psychology, among others, computer
s5ience, though still somewhat formless and unfocused, is also an
independent entity. Both government and universities tend to view
it as such, as is evidenced by dozens of tmiversity computer science
departments and a separate Office for Computing Activities within
the National Science Foundation. As a mathematical science, com-
puter science emphasizes the constructive, problem-solving, algo-
rithmic aspect of mathematics, in contrast with the structure aspects,
often emphasized in core mathematics. As a young field that must
respond to soaring demands for knowledge at all levels of speciali-
zation, computer science can use the cooperation of mathematicians
in creating a solid body of knowledge.

Computer science is at once abstract and pragmatic. The focus on
actual computing systems introduces the pragmatic component; the
central questions are economic ones like the relations among speed,
accuracy, and cost of a proposed computation, and the hardware and
software organization required. The often better understood
theoretical questions of existence and computability provide an
important conceptual basis for the study of the more pressing ques-
tions. (And these in turn have led to new mathematical research in
such questions as degrees of finite computability.) On the other
hand, computer science deals with informationin an abstract way.
The meanings of symbols and numbers may change from appli-
cation to application, just as they do in every application of mathe-
matics, Thus computer science shares the main goal of mathe-
maticsto create a basic structure in terms of inherently defined
concepts that is not bound to any particular application. Computer
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scientists have barely begun the creation of such a basic structure
and are still mainly concerned with exploring what computers can
and cannot do economically.

So far the most mathematical components of computer science
are numerical analysis and the theory of programming languages.

The first computers were programmed in machine language, a
language that might be likened to microsyllables of human speech.
Typical of machine language is an instruction saying in effect: "Add
the number in cell 4565 to the number in arithmetic register A, and
leave the answer in register A." The solution of substantial mathe-
matical problems in terms of such instructions expended many man-
months of tedious, repetitive human labor. After some years, it was
realized that computers, with their infinite capacity for carrying out
details, could themselves be instructed to translate an algebraic
language into machine language. Thus human beings could write
programs in higher-level languages like Fortran and Algol and save
perhaps 99 percent of their programming time. Soon such algebraic
languages and the complex translation programs (called compilers)
required to translate them automatically became objects of study in
themselves. It was learned that programming languages that were
easily described in the terms of mathematical linguistics were both
more effective and easier to write compilers for. Thus computer
science profited from research in mathematical linguistics whose
motivation had been entirely different. By now the number of alge-
braic languages has grown out of hand, and research is actively
going on in automating the writing of compilers by other programs,
called compiler-compilers.

By its speed of processing information and making decisions, the
electronic digital computer can be an extension of the human mind
with capacities in this direction incomparably greater than those
of any mental aid heretofore available. A great deal of contemporary
research in computer science goes into designing hardware, lan-
guages, and software for the effective coupling of human minds to
computers. The goal is to match the highly versatile and imagi-
native human mind, which is slow, with the extremely fast, accurate,
and tireless computer, which lacks initiative. It appears that one
acceptable solution will take the form of time-sharing. In this, a
computer rotates its "attention" among some dozens of human
beings, each at his own console, just as a master chess player can
play simultaneous chess with a roomful of less-skilled opponents.
Creating effective and economic time-shared computer utility will
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require the combined skills of mathematicians, operations analysts,
computer scientists, and engineers, since extremely complex prob-
lems are involved. This is a field of very active research in computer
science today.

In addition to the reasonably successful methods developed for
numerical computation and programming languages, algebraic
(nonnumerical) methods for some classes of problems are now
emerging. Methods for handling pictorial data have been formalized
for large classes of pictures. There still remains an almost unlimited
array of topics that are not being treated systematically. This is the
frontier of computer science. It includes a large number of non-
numerical problems, as well as such problems as executive control
(scheduling, allocation, handling, interruptions) and simulation of
intelligent behavior.

OPTIMIZED ALLOCATION, CONTROL, AND DECISIONS

The needs of economic theory for results about allocation, those of
management practice for approaches to decisions (which can usually
be cast in terms of allocation), and those of engineering operation
for patterns of control (whether in trajectory choice or the feedback
control of production machinery) all lead to a single interrelated
complex of problems, concepts, and results. In almost every case,
these problems can be described in terms of maximizing or mini-
mizingi.e., optimizingsome criterion subject to constraints on
the variables.

Separately developed traditions are now being merged into a
coherent body of concepts and results. Workers in the field have
come to recognize its unity as more important than its diversity.
The needs of economists, managers, and engineers for explicit guid-
ance in choosing answers, and for as many explicit answers as pos-
sible, have anchored this area close to the frontier. There is interest
in a procedure that in principle describes a solution, but ordinarily
only as a step toward a feasible procedure for finding actual solu-
tions. Since feasibility is a matter of computation, exactly what
computing tools are available is vitally important. This whole area
is therefore intimaiely bound up with computer systems and with
machine arithmetic.

An interesting mathematical development in this area was Von
Neumann's and Morgenstern's "theory of games and economic be-
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havior," which tackled the strategic and mathematical problems of
simultaneous optimization of rewards by two or more game players
or economic competitors.

A major thread began with linear programming, the problem of
optimizing a linear function of many variables when subject to very
many simple linear inequalities. Linear programming problems
were first systematically attacked in the 1930's, in Russia by
Kantorovich, whose results escaped notice for many years, and in
the United States at about the same time by Koopmans and Hitch-
cock. The field's growth in the United States was greatly stimulated
in 1947 by Dantzig's discovery of a method that made possible the
solution of reasonably complex problems with then available com-
puter facilities. A burst of industrial applications soon stretched
both the practical and the theoretical boundaries of the subject.
Nonlinear programming was introduced, in which the function to
be maximized was generalized from a linear function of the given
variables, and the constraining inequalities were also generalized.
The fact that many practical problems involve units that cannot be
subdivided (how many dresses can be cut from a bolt of cloth?)
now demanded, and received, an effective theory of integer program-
ming.

A third line of development involved problems of simultaneous
allocations: How can n persons be best assigned to n jobs? How can
many factories best ship their products to many customers? Some al-
location problems have proved to be intrinsically very difficult: What
pattern of warehouse locations will minimize shipping costs? What
is the shortest route passing through every one of a list of cities?
Treated directly, such problems have a characteristic irreducible
complexity, since the entire solution must be examined simultane-
ously.

Certain types of these problems have fortunately been found to
be reducible to problems of linear and nonlinear programming and
have thus become much more easily soluble. Others have yielded to
special algorithms, and the remainder pose serious problems for the
techniques of combinatorial analysis and the capacities of modern
computing systems.

A fourth line of development involved dynamic programming or
the theory of multistage decision processes, which treats problems in
which a number of decisions are made over a period of time. The
maintenance of inventories in the face of uncertain demand, where
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there must be repeated decisions of whether and how much to order,
poses a typical problem, as do the scheduling of production, equip-
ment replacement, the conversion of stored water to power, and a
wide variety of queuing processes.

As these lines of development continued, perspectives broadened,
and the field matured, linear and nonlinear programming and
dynamic programming fused together into mathematical program-
ming.

A fifth line of development, carried on vigorously both in the
Soviet Union and in the United States, involved the optimum con-
trol of systems reasonably thought of as tracing a path. When
choosing a rocket trajectory that will require least use of fuel, the
path is physical. When deciding how the temperatures in a chemical
reaction vessel should change to maximize production of the desired
chemical, the path is symbolic. The general mathematical problem
is the same, and the same mathematical results are applicable. In
many ways, these problems of control theory are continuous.time
analogs of the problems of dynamic programming. Both lines of
development have contributed ideas to one another, with control
theory more frequently taking the lead, since continuous time
with a decision every instantrequires much more sophisticated
mathematical techniques and much deeper mathematical results.

Allocation is the immediate end of the theory of games and a
consequence of most applications of mathematical programming.
Control is the aim of control theory and many applications of
dynamic programming. Decisions have to be made in every case.
Optimization of some prescribed function is the common thread
that links all these lines of development together. Opinions differ
on whether the area thus described has already become a clearly
identifiable field of mathematical science. If not yet, it soon will
become one.

OTHER AREAS

The fields of mathematical science outside the core will continue
to make increasing contributions. They will require deepening
mathematical education and broadening mathematical literacy
among their own workers. This places a great responsibility on uni-
versity and college faculty in the mathematical sciences. They must
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provide instruction in core mathematics, including its own latest
and most useful concepts, approaches, and results, which alone will
strain their capacities. In addition, they must provide instruction
that identifies and illustrates the multifaceted role of mathematics
in our society.

.,
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Examples of Mathematics in Use

Many years ago Auguste Comte claimed that a science is a science
only insofar as it is .:-.Aathematical. The mathematization of physical
science has been going on for centuries, that of the life and be-
havioral sciences for a shorter time. Engineering, which is a tech-
nology based on physical science, has always used mathematics as an
essential tool. The mathematization of a wide variety of other tech-
nologies is in process. Accordingly, an exhaustive review of the
penetration of mathematics into various areas of human endeavor
would require volumes. In this chapter we describe a few typical ex-
amples: physicsa science completely mathematized almost from its
very inception; engineering designa fully mathematized tech-
nology; mathematics in the newer environmental sciencesspecifi-
cally, numerical weather prediction; economicsin which the
penetration of mathematics is about a hundred years old; the tech-
nology of management and operationsin which mathematization
is a World War II development.

Clearly we have omitted many important examples. See, for some
specific instances, the essays by Cohen on mathematics in biology,
by Lederberg on some uses of mathematics in chemistry, and by
Harris on mathematical linguistics.7

The degree of mathematization, the sophistication of mathemati-
cal tools used, and the lasting intellectual value so far achieved by
the use of mathematics vary widely from field to field, as we shall
comment at the close of this chapter.

101
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MATHEMATICS AND PHYSICS

Physics is an experimental science concerned with the material world
around us. The aim, as physicists define it today, is to describe and
to correlate the multitude of experimental phenomena in terms of
theoretical concepts formulated in the language of mathematics.
Why natural phenomena should be describable in the language of
mathematics is a matter of controversy. (For instance, E. Wigner en-
titled a lecture "The Unreasonable Effectiveness of Mathematics in
the Natural Sciences.") Yet it is indisputable, and indeed usually
taken for granted, that natural phenomena have been so described
with brilliant success.

Because physics deals with quantitative measurements, mathe-
matics comes into physics naturally as an aid for computation and
as a tool for the logical operations in theoretical developments. The
traditional main branches of mathematicsalgebra, analysis, and
geometryhave been extensively used in many fields of research
in physics in this way. As soon as computers were developed, physi-
cists immediately began to use them to great advantage, to aid in
data processing as well as to solve numerical problems.

While mathematics plays an important role in physics in the man-
ner just described, it plays, at the same time, a far more important
role at a more fundamental level. In fact, mathematics supplies many
of the basic concepts that physicists use to describe natural phenom-
ena. For example, the abstract mathematical concept of noncommu-
tative multiplication lies at the foundation of quantum mechanics.
Non-Euclidean geometry is the very starting point of general relativ-
ity. There are physicists who believe that analytic continuation is a
mathematical concept needed to describe the physical principle of
causality.

As one reviews the development of physics through the centuries,
starting from the early studies of astronomy and Newtonian me-
chanics, proceeding through the nineteenth century formulation of
electromagnetic phenomena and of the a F.:ory of heat and thermo-
dynamics, and then to the modern development of relativity, quan-
tum mechanics, and high-energy physics, one is struck with the in-
creasingly abstract and sophisticated nature of the mathematical
concepts that it was necessary to introduce for the description of
natural phenomena. Such observation was undoubtedly behind the
remark of the late British physicist, jeans, that God is a mathema-
tician. Some examples of the sophisticated mathematical concepts

,V
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that have been introduced into physics in recent years are found in
the essays by Dyson and Wightman in reference 7. We quote from
an article by the great physicist P. A. M. Dirac [Proc. Roy. Soc., 133,

66 (1931) ]:

The steady progress of physics requires for its theoretical formulation a
mathematics that aets continually more advanced. This is only natural and
to be expected. 'What, however, was not expected by the scientific workers
of the last century was the particular form that the line of advancement of
the mathematics would take, namely, it was expected that the mathematics
would get more and more complicated, but would rest on a permanent basis
of axioms and definitions, while actually the modern physical developments
have required a mathematics that continually shifts its foundations and
gets more abstract. Non-Euclidean geometry and noncommutative algebra,
which were at one time considered to be purely fictions of the mind and
pastimes for logical thinkers, have been found to be very necessary for the
description of general facts of the physical world. It seems likely that this
process of increasinero abstraction will continue in the future and that ad-
vance in physics is to be associated with a continual modification and gen-
eralization of the axioms at the base of the mathematics rather than with a
logical development of any one mathematical scheme on a fixed foundation.

Many physicists believe that the central problem they face today,
namely the structure of atomic nuclei and their constituent parts
(also known as high-energy physics), may well be solvable only upon
the introduction of mathematical concepts not hitherto used in
physics and perhaps as yet unknown to mathematicians. Be this as
it may, it has been repeatedly demonstrated that a sense of form and
an appreciation of elegance, abstraction, and generalization, which
are the hallmarks of good mathematical development, are often also
the characteristics of the new breakthroughs in physical insight. In
fact, what one refers to as physical ideas often derive from properties
of abstract mathematical concepts, which turn out to have wide-
spread and deep-rooted applicability in natural phenomena. In re-
viewing the interplay between mathematics and one branch of
physics, M. J. Lighthill [J. Roy. Aeronaut. Soc., 64, 375 (1960) ]
observed that an important task of mathematics is to generate new
physical ideas, that is,

. . ideas which have been originated by mathematical investigation but
which later become amenable to almost exclusively physical description, and
whose properties, although first derived mathematically, become familiar
and are commonly described in purely physical terms. The value of physical
ideas in practical work, of course, is their elasticity. Provided that they are
sound ideas, such as those thrown up as the genuinely appropriate physical
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description of the mathematical solution of some well-defined class of prob-
lem, they usually show a splendid capacity to stand up to distortion of the
problem, and indeed to radical changes and complication in its conditions,
and still give the right guidance about what needs to be done.

It is worth remarking that this in fact holds for practically all appli-
cations of mathematics.

The relationship between physics and mathematics is by no means
a one-way street. While physics uses mathematical concepts, mathe-
matics draws inspiration and stimulation from the physicists' need
for new mathematics. The invention of calculus, of differential
geometry, of the ergodic theory, all represent mathematical develop-
ments stimulated by physical problems. We quote from a recent
report by physicists (reference 11, page 162):

Through centuries of intimate contact, theoretical physics and mathematics
have interacted strongly to their mutual benefit. Theoretical physics uses the
concepts developed in mathematics to formulate descriptions of natural
phenomena. Mathematics, in turn, is stimulated in its direction of develop-
ment by the problems posed by physics. In recent years, the influence of
theoretical physics on the development of mathematics seems to have weak-
ened. However, there are still many conspicuous examples of mathematical
development influenced by physics: for example, the theory of unbounded
operators, the representation theory of noncompact groups, and the theory
of distributions. It would be rash to believe that natural phenomena would
not again, in the future, as in the past, serve as the fountainhead for impor-
tant directions of research in mathematics.

The tendency for core mathematics as a whole to move away from
physics may be an inevitable characteristic of the mathematics of this
century. [See, e.g., M. Stone, "The Revolution in Mathematics,"
American Mathematical Monthly, 68, 715 (1961).] It would be
detrimental to both disciplines if this tendency were allowed to take
the extreme form of isolating the mathematicians and physicists from
mutual intellectual contacts. To forestall such eventuality it is
highly important that at the undergraduate, graduate, and post-
graduate levels students be given the chance to be exposed to the
exciting basic developments of each of the two disciplines.

MATHEMATICAL SCIENCES IN ENGINEERING

The uses of mathematics in engineering represent one of the best
recognized as well as one of the most important manifestations of the
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general mathematization of our culture. Whether one looks at rela-
tively old fields, like civil and mechanical engineering, or relatively
new ones, like nuclear technology or electronics, one finds a steady
increase in the amount and sophistication of the mathematics used.
Information theory is a well-known example. It involves very deep
mathematical problems, but its dramatic development was stimu-
lated by the practical need of communications or electronics engi-
neers for a measure of the job of transmitting a given class of
messages through a given medium. Modern developments in aero-
dynamics depend on the desire to build aircraft and missiles flying
at higher and higher speeds. It is fcl nd, as expected, that the more
advanced the technology, the more sophisticated are the basic con-
cepts involved, and the more they depend on mathematics. It is often
impossible to understand the concepts used by engineers (even such
basic ones as impedance matching, reduction of drag by interference,
and subharmonic resonance) without using mathematics.

One form that increased mathematization often takes is develop-
ment of more precise theories to take advantage of concurrent ad-
vances in other directions. For example, a margin of safety of 4:1 has
frequently b;!en used in structural design. Such a factor of safety
would be utterly unworkable in the design of most missiles; the
missiles would be too heavy to get off the ground. Margins of safety
as low as 20 to 30 percent are sometimes used. To live with such
factors one must have a much more accurate knowledge of aero-
dynamic forces, natural modes of vibration in the body, and stress
distribution than he would otherwise need. Of course, one must also
have very good control of the materials and processes that make up
the final structure. However, this merely illustrates the common fact
that to take maximum advantage of improved technology, advances
on the theoretical side and on the physical side must go hand in
hand.

New mathematical techniques, particularly in conjunction with
computers, are frequently used also in situations where old-fashioned
"hand" methods would be too slow or too laborious. For example,
the analysis of mathematical models is extensively used in modem
civil engineeringan analysis made possible by the existence of
large-scale computing machines. The mathematical formulation
often leads to linear programmirk Prediction of satellite orbits,
guided and controlled, is another activity involving careful mathe-
matical formulation and extensive numerical calculations. Once a
computational program is well designed, the work is routine and
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repetitive, but the original formulation ofter involves deep insight,
which can be acquired only by mathematical analysis. The design
of gas turbines is another example of the use of computers.

Fluid mechanics, one of the best-established areas of applied
mathematics, is important in several engineering fields. The noise
produced by jet aircraft and the shock waves associated with super-
sonic flight must be understood in detail befpre remedies and im-
provements can be suggested and designed; combustion instability
leads to critical problems in the development of rockets; and sys-
tematic progress in minimizing the devastating effects of tornadoes
cannot be expected until the understanding of atmospheric dynamics
has greatly improved.

The field of electronics and communications is particularly rich
in the applications of mathematics. Some of these are like repre-
sentative problems in other engineering disciplines. For example,
lumped circuit theory, both linear and nonlinear, has many points
of resemblance to similar areas in mechanics. For continuous media,
many problems in electromagnetic field theory are at least broadly
similar to typical problems in fluid mechanics or elasticity. The de-
sign of radio antennas, for example, can be based on wave-interfer-
ence effects similar to those that figure in airplane and ship design.
More generally, the study of the propagation of radio signals in-
volves a variety of special problems that have challenged such great
mathematical physicists as Sommerfeld and such great mathema-
ticians as Hermann Weyl. In recent years, still more complicated
mathematical questions have arisen in the study of plasmas, a field
of increasing importance in many areas of electrical engineering.

The most fundamental applications of mathematics to electronics
and communications, however, are found at the conceptual level.
These normally stem from situations in which mathematics offers
the best language in which to express both the original engineering
problem and the final result. Such situations arise because electricity
itself is an intangible that can hardly be described except through
mathematics, and because electrical systems are frequently so exten-
sive and complicated that considerations of mathematical regularity
and simplicity must be paramount in laying them out.

Perhaps the most elementary example is furnished by the mathe-
matical concept of an impedance. This, though engineers seldom
realize it, is strictly a mathematical artifice, a nonphysical "imagi-
nary" quantity by means of which the real currents and voltages in
which the engineer is finally interested can be calculated con-
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veniently. Its use becomes a necessity when we deal, as we frequently
must, with circuits containing dozens or hundreds of elements. The
use of transform methods, established in communications engineer-
ing for many years, provides another example. No communication
engineer could possibly deal with the variety of signals he must meet
in practice without the help of the concept of a frequency spectrum.
In more recent years, concepts from mathematical logic have turned
out to be an important basis for switching and computer circuits.
The best example, however, is probably furnished by information
theory. The identification of communication engineering and mathe-
matical logic as two systems that are both concerned largely with the
manipulation of arbitrary symbols according to formal rules, made
possible by information theory, tremendously broadened the horizon
of the communication engineer and at a stroke opened to him vast
areas of mathematics as a source of ideas for particular ciphers and
coding schemes.

It may happen that the same engineering objective may best be
served first by one physical technique and then by another, generat-
ing new mathematical problems as they evolve. An example is fur-
nished by surveying, which goes back to classical times and may be
regarded as the generator of both geometry and trigonometry. The
basic techniques in this case were, of course, optical. With the inven-
tion of other instruments such as the telescope, the sextant, and the
chronometer a few centuries ago, and greater interest in accurate
navigation, still more complicated problems of the same nature
emerged. In modern times the basic technique is electronic, as rep-
resented by radio networks like LORAN or by navigation satellites.
Here the important questions turn on analysis of the coherence and
other statistical characteristics of the signal. Still more complicated
problems of statistical signal analysis occur in connection with the
"surveying" of the solar system by means of radar signals bounced
off the nearer planets.

Almost the converse situation occurs when several branches of en-
gineering may be involved in a single system. Here the fact that they
can all be dealt with mathematically may be all that holds the situa-
tion together. An example is furnished by missiles, which typically
involve not only aerodynamics and structural mechanics, but chem-
istry through the propulsion system and ablative coating and elec-
tronics through the control and guidance equipment. They may all
be involved if, for example, the missile is required to execute a vio-
lent maneuver, and it is only the fact that they are all relatively well
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understood mathematically that makes it possible to design the
system as a whole.

In general, modern engineering systems are too large, complex,
and precisely integrated to be designed by empirical test. They must
be thoroughly analyzed mathematically in advance of testing in
order to obtain reasonable assurance of success.

These diverse applications include many unifying mathematical
threads, which deserve to be identified as areas of applied mathe-
matics worth studying on their own account. Once this basic level
has been reached, the knowledge gained applies to other branches of
technology. Thus problems of transient loading in mechanical sys-
tems benefit from techniques originally developed for communica-
tions, and chemical and aeronautical engineers work on problems of
blood flow and contribute to the advance of medical science.

AN EXAMPLE FROM THE ENVIRONMENTAL SCIENCES:
NUMERICAL WEATHER PREDICTION

The environmental sciences include earth sciences, oceanography,
atmospheric sciences, telecommunications sciences, and aeronomy.
Some of the most difficult and sophisticated mathematical problems
in the environmental sciences arise from efforts to study the at-
mosphere and the oceans by means of mathematical models in the
form of deterministic fluid systems. This leads to nonlinear partial
differential equations subject to rather general boundary and initial
conditions. The most successful attempts to treat these problems
have involved the use of high-speed computers.

Of special day-to-day importance are the numerical methods of
weather prediction now in regular use. The National Meteorological
Center* provides, on an operational round-the-clock basis, guidance
material to all the national forecast services, as well as to foreign
services, under the auspices of the United Nations. The guidance
material consists of large-scale wind and weather patterns over the
entire northern hemisphere. The basis for this is the approximate
numerical solution on large electronic computers of hydrodynamic
and thermodynamic partial differential equations constituting a
mathematical model for the behavior of the atmosphere.

" Of the Weather Bureau, Environmental Science Services Administration, U.S.
Department of Commerce. The Center was established in 1954 in Suit land, Mary-
land, expressly for numerical weather prediction.
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The general idea of mathematical weather prediction dates from
the first few years of the twentieth century. Detailed pioneering
proposals and experiments in weather prediction through the ap-
proximate solution of relevant hydrodynamic and thermodynamic
equations go back to the British scientist L. F. Richardson12 in the
early 1920's. Richardson's forecasts were not successful, the most
fundamental reason for this being his violation of a then unknown
stability criterion for numerical processes in the solution of partial
differential equations (discovered in 1928 by Courant, Friedrichs,
and Lewy).

Another reason for the failure of Richardson's forecasts was in-
sufficient data. It was not until the 1930's and early 1940's that em-
pirical observations began to approach the frequency and detail
needed for successful attempts at weather prediction on a mathe-
matical basis. In particular, the new upper-air observational network
developed during the 1930's elucidated the dynamics of the so-called
jet stream, a great meandering river of air, five to eight miles high
and hundreds of miles wide, which loops completely around the
northern hemisphere at middle latitudes. The jet stream, together
with important vorticity-conservation ideas in its mathematical
modeling, has turned out to be the key to large-scale weather pre-
diction in the northern hemisphere.

A third difficulty that would almost certainly have defeated Rkh-
ardson's original 1922 proposals for numerical weather prediction
was the lack of facilities for high-speed computation on the intricate
and massive scale needed. He had visualized a giant "weather fac-
tory" staffed by an estimated 64,000 human computers busily en-
gaged in obtaining approximate solutions for the appropriate partial
differential equations of hydrodynamics and thermodynamics. Look-
ing back, experts today feel it would hardly have been possible to
organize such an operation to produce timely weather forecasts.
This is, however, the kind of task for which the modern high-speed
electronic computer is ideally adapted. The first such computers ap-
peared in the late 1940's. John Von Neumann played a vital role
both in the logical design of these computers and in their first suc-
cessful use in weather calculations in 1948.

During the succeeding years, computers have become steadily
more powerful, in speed, versatility, and capacity. Thus, weather
calculations that required 24 hours in 1948 were being performed in
five minutes by 1951. These and subsequent advances in computer
design have been paralleled by advances in research on numerical
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weather prediction. The relatively simple equations defining the first
models for the atmosphere have been extensively refined and elabo-
rated. The early models carried no detail of the vertical structure of
the atmosphere, but rather only a vertical average of its motion. By
mid-1962, however, a system allowing for three vertical levels had
become the principal operational model at the National Meteoro-
logical Center. This in turn was replaced, in mid-1966, by a six-level
model.

In addition, over the past 20 years considerable advances have
been achieved in the methods of numerical analysis used in weather
prediction. Many aspects of the numerical techniques are still highly
unsatisfactory, however, imposing severe limitations on the kinds of
simulation that can be attempted. It is often difficult even to dis-
tinguish between distortions introduced by the numerical methods
and those resulting from deficiencies in the mathematical model.
Thus the future will continue to present challenging and thorny
problems in this field.

MATHEMATICAL SCIENCES IN ECONOMICS

The explicit penetration of nonelementary mathematics into eco-
nomics began about a century ago with the introduction of rates of
change in terms of marginal ratios and elasticities. For many decades,
economists carried out derivations in words or graphical patterns
rather than by formulas. These derivations did, of course, involve
chains of symbolic reasoning and were thus intrinsically mathemat-
ical, though not always recognized as such. The twentieth century
has seen a rapidly increasing use of formulas and of mathematical
results and theorems (see the essay by Klein in reference 7). It has
rather steadily been true that about half of the papers appearing in
the principal economics journals would have been rejected ten years
earlier as "too mathematical." The earlier uses of mathematics in
economics centered around the use of the calculus as a means of
describing interrelationships. The emphasis slowly changed to prob-
lems of maximization or minimization, originally of smoothly vary-
ing functions with no or few constraints.

Problems dealing with the appropriate behaviorthat which ra-
tional participants "ought," or clients should be advised, to exhibit
were intermingled from an early date with problems concerning
the effects of ideal mechanisms, such as free competition, in distrib-
uting goods and services. Both classes of problem involve optimizing
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allocation of resources. Today, the mathematics of optimized alloca-
tion, control, and decision, discussed in Chapter 5, has many appli-
cations in economics, and economists as well as mathematicians
contribute to it.

Alongside mathematical economics is the very active area of
econometrics, in which sta tistical tools, many of them developed for
the purpose, are essential. Here, too, both economists and statis-
ticians are contributing to the development of new techniques and
to fresh understandings of old ones.

As in so many other areas, large parts of economics are being al-
most revolutionized by the availability of modern computing systems
to store and digest quantities of data and to solve complex problems
either directly or by tentative approximation.

Large areas of economics are now highly mathematized. For ex-
ample, there are mathematical theorems concerning the existence of
competitive economic equilibrium. The study of business cycles leads
to systems of differential equations similar to those occurring in dy-
namics of physical systems. Indeed, many of the most respected econ-
omists are mathematically oriented. Key economists know as much
of the details of modern control theory and what is known about the
stability of nonlinear systems, to take two examples, as do all but the
most specialized mathematicians. It is therefore not surprising that
most members of the President's Council of Economic Advisers and
its professional staff have been trained as mathematical economists.
We recall also that J. M. Keynes, the father of modern economics,
had been trained as a mathematician.

Education in economics is now highly mathematically oriented.
In most major departments in the United States, all economics PhD's
are required to learn calculus, selected topics in advanced calculus,
the elements of linear algebra and probability, statistical inference,
and econometrics. As a foundation for everyone, this is an impressive
array, especially in contrast to the situation one, two, or three dec-
ades ago. In many leading graduate centers, additional mathematics
courses are replacing the requirement of a second language for PhD
candidates.

MATHEMATICS IN FINANCE AND INSURANCE

The vast majority of humanity uses elementary mathematics pri-
marily in handling money. As a matter of fact, the reaw..kening of
mathematics in Europe during the Renaissance coincides roughly
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112 The State of the Mathematical Sciences
with the transition from a barter economy to a monetary economy.The universal spread of rudimentary mathematical literacy was aconcomitant of the development of that economy.

On a more sophisticated level, mathematics is used in insurance,
in particular in life insurance, which dates back to the end of the
sixteenth century. Statistical methods have been developed partly asa result of the needs of insurance companies. Mortality tables wereamong the first statistical tables published. The actuarial professionis a typical instance of a thoroughly mathematized technology. Theflowering of mathematical statistics in Scandinavia during recentdecades was certainly seeded by Scandinavian concern with the

mathematics of insurance.
One of the more interesting applications of mathematics in ac-tuarial work is the extraction of a set of mortality rates from ob-served data and the substitution of smoothly progressing rates forthe irregular set extracted. This is the classical problem of gradua-tion which has been attacked in many ways over the years, mostrecently within the framework of a Bayesian approach.
Among the early graduation methods employed by actuaries werevarious adaptations of curve-fitting. Later a number of linear com-pound formulas were devised to produce smoothly progressing rates,judged by the reduction of error in third differences. In recent years,the most widely used graduation formula has been one based on a

difference equation, which represents a compromise between smooth-
ness and closeness of fit. Within the last year, new graduation meth-
ods have been developed as a problem in straightforward statisticalestimation of a large set of mortality rates simultaneously, proceed-ing, however, from a prior distribution of the "true" rates grounded
on personal probability and making use of Bayes' theorem.

Another type of problem is illustrated by various elaborations ofthe theory of risk, which has been developed as a special case of the
theory of stochastic processes. The so-called "collective risk theory"focuses attention on the distributions of total claims of an insurance
company at the end of a specified period of time, so that a reasonable
judgment might be made about appropriate limits of retention orbounds of acceptable adverse fluctuations. These are essential con-siderations in reinsurance.

Collective theory of risk was developed by a number of Scan-dinavian actuaries (notably F. Lundberg, H. Cramer, and C. 0.Segerdahl) for investigating insurance company operations from aprobabilistic viewpoint or, more realistically, the emergence of prof-its in a risk enterprise. The basic model considers the distribution of
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total claims of a risk enterprise as being composed of two elements
frequency and severity; the resulting distribution of total claims
can be regarded as a stationary stochastic process with independent
increments and as a compound Poisson process. In recent years, the
fundamental assumptions of the theory, and hence its range of ap-
plication, have been significantly enlarged by the use of more general
probability models that allow for certain types of fluctuations in
basic probabilities. The exact distribution of total claims of an in-
surance company has been studied analytically for a variety of
assumptions. Ingenious numerical approximations have been devel-
oped, and more recent broader analytic-numerical studies of total
claim distributions have been made, relying extensively on computer
simulation.

MATHEMATICS IN MANAGEMENT AND OPERATIONS

During World War IL the use of simple mathematical models and
mathematical thinking to study the conduct of military operations
became a recognized art, as first scientists and later mathematicians,
lawyers, and people with other backgrounds demonstrated its effec-
tiveness. After the war, attempts to apply the same attitudes and
approaches to business and industrial operations and management
were pressed forward rather successfully. Combined with techniques
and thinking drawn from, or suggested by, classical economics, this
line of development has now led to an active field about whose
names Howard Raiffa of Harvard University has observed:

Some names which are used more or less interchangeably are: Manage-
ment Science, Operations Analysis, Operations Research, Decision Analysis,
Systems Analysis, CostBenefit Analysis, Mathematical Programming (under
certainty and under uncertainty), Decision and Control, Optimization
Theory, Control Theory, Applied Mathematics II (Roman numeral I is
reserved for mathematical physics and astronomy). Of course, researchers
and practitioners in these areas could each argue persuasively that their title
is most appropriate and that what they do is somewhat broader than what
others do.

Whatever the title, the flavor of what is done is the same, com-
bining the use of numerical data about operating experience so
characteristic of early military applications with mathematical
models to provide guidance for managerial action and judgment.
This field was created by scientists accustomed to the use of mathe-
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matics; both its spirit and its techniques have always been thor-
oughly mathematical in character. This mathematical approach is
steadily penetrating the practice of management and operation.

A number of the leading schools of business administration have
concluded that mathematics is important both as a tool and as a lan-
guage for management, and that training for the professional class
of managers should include a substantial dose of this field of many
names. Therefore, calculus, linear algebra, and computer program-
ming either must be prerequisite for entrance or must be taken early
in the graduate training program. At a leading business school (Har-
vard), which is not "mathematically oriented" and where no such
requirements are imposed, about 75 percent of the entering students
have at least two years of college mathematics, several elective courses
requiring that degree of mathematical sophistication are given, and
there is a sizable group of faculty members who have PhD degrees in
mathematics or applied mathematics.

This field is pervasively mathematized and computerized, but it is
far from being strictly a mathematical science. The pattern of its
problems is frequently described as formulating the problem, con-
structing a mathematical model, deriving a solution from the model,
testing the model and the solution, establishing control over the
solution, and implementing the solution. Only one of the six steps is
completely mathematical; the others involve the actual problem in
an essential way. In these other steps, of course, there are many ap-
plications, some of them crucial, of statistics and computer science.
The mathematical step, especially when dealing with management
rather than operational problems, often draws on concepts and re-
sults from the field of optimized allocation, control, and decision.

A good practitioner combines the characteristics of most profes-
sional consulting and of most effective application of mathematics:
abundant common sense, willingness to produce half-answers in a
half-hour, recognition of his key roles as problem formulator and
contributor to long-run profits (rather than as problem solver or
researcher). Yet for all this, and in an alien environment, he must
retain his skill as a mathematician.

CONCLUDING REMARKS

We have touched upon only some of the uses of mathematical meth-
ods in disciplines outside of the mathematical sciences proper. The

1
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number of such instances is steadily increasing, and the boundary
lines between mathematical sciences and sciences that use mathe-
matics are often difficult to draw.

The increasing use of in:.:thematical methods in the biological
sciences was pointed out earlier in the section on The Mathematiza-
tion of Culture (see page 3); and the essay by Hirsh Cohen in
reference 7 discusses in more detail a variety of biomedical applica-
tions of mathematics. A 1967 compilation by Thrall et 0.14 pro-
vides extensive further illustration of applications of mathematical
models in biology.

An important omission in our discussion is the burgeoning field
of mathematical psychology. A comprehensive survey of this field can
be found in reference 13. Another important example of the pene-
tration of mathematical methods into hitherto unmathematized
areas is in the young science of mathematical linguistics, which ap-
plies mathematical methods and the mathematical way of thinking
to the study of living languages. (See, for instance, the essay by
Harris in reference 7.)

All great goods spawn small evils. Every new and powerful tool is
misused as well as used wisely. This was true of printing and me-
chanical power when these tools were new. Today, in any field of
endeavor where mathematics or statistics or computing is new, there
will be those who use these tools inadvisedly, as a means of persua-
sion when the evidence is incomplete or even incorrect, or as a means
of "blessing" conclusions that do not deserve support. All fields now
well mathematized or well statisticized or well computerized have
suffered through these difficulties. Those in process now, or to be in
process in the near future, will have to suffer too. Such difficulties
often slow down the incorporation of mathematics or statistics or
computing into the heart of a new field of application. These delays
are, we fear, inevitable.

The one antidote that has proved effective is an increased amount
of mathematical or statistical or computing literacy for the majority
of those who work in the field. This increase comes in two parts,
separable but usually joined: on the one hand, enough literacy about
the mathematics involved to understand the meaning, perhaps even
the details, of the manipulations required; on the other, often even
more important, an understanding of how mathematics or statistics
or computing fits into actual problems in similar areas. This latter
includes an appreciation of one of the skills of an effective user: the
ability to be usually sound as to what must be taken into account in
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formal or numerical manipulations, what can probably be neglected,
and what is surely negligible. It is not easy to teach these things ex-
plicitly; they are usually learned by experience in doing and thus
come to depend on at least some facility with the manipulations
concerned.

(Y)
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Research in the mathematical sciences is intimately connected with
education. The overwhelming preponderance of basic mathematical
research is done in universities by professors who view teaching and
the guidance of research apprentices as an essential part of their in-
tellectual lives. Graduate teaching in the mathematical sciences
merges directly into doctoral and postdoctoral research 'guidance;
and undergraduate education merges into graduate education, many
graduate courses being open nowadays to qualified undergraduates.

There is, however, a more important reason why the present re-
port should devote considerable attention to undergraduate as well
as graduate education. For, as mathematical methods appear in an
increasing variety of human activities, it is at the undergraduate level
that there is the clearest prospect of greatly changing and increasing
needs for mathematical courses among students in other fields. The
implications of this for staff and curricula in the mathematical sci-
ences are severe and are considered in detail below. Our main con-
clusion is that there is 170W a. shortage of qualified college teachers of
the mathematical sciences, and that this situation is likely to get
worse before it gets better.*

Undergraduate mathematical education in turn depends on
mathematical training at the secondary and elementary school levels.

* Added in proof: All our estimates and predictions about future numbers of
PhD's were formulated before the February 1968 issuance of new Selective Service
rules affecting graduate students. If these rules should result in a serious deple-
tion of the graduate student population, this would, of course, intensify the pre-
dicted shortage of PhD's in the mathematical sciences.



While it was early decided that, it was beyond our scope to make a
direct study of school-level mathematics and its curriculum reform
movements, our studies have necessarily touched on school-level
mathematics in two ways. First, we have had to recognize the effect
on college mathematical curricula of the changing and generally
improving preparation of entering college students. Second, we have
had to take account of the increasing needs for higher mathemati-
cal education on the part of those who are or will become secondary
or elementary school teachers.

THE LINDQUIST AND CBMS SURVEYS

For academic year 1960-1961, Clarence B. Lindquist of the U.S.
Office of Education made a detailed and comprehensive surveyn of
U.S. higher education in the mathematical sciences. On the initiative
of its Chairman, Gail S. Young, the Survey Committee of the Confer-
ence Board of the Mathematical Sciences (cBms) has, with the assist-
ance of Dr. Lindquist, repeated this survey for academic year
1965-1966, using a questionnaire very similar to Lindquist's for
undergraduate education and separate detailed questionnaires for
graduate education in mathematics, statistics, and computer science.
Taken together, the Lindquist and CBMS studies yield trend informa-
tion on mathematical education in the four-year colleges and uni-
versities of the United States in a depth and extensiveness hitherto
unparalleled in studies of higher education for any academic field.
The alms Survey Committee has now completed a similar survey,
for academic year 1966-1967, of mathematical education in the two-
year colleges (including technical institutes) in the United States.
The CBMS Survey Committee is publishing the full results of its var-
ious studies in its own report.16 Both the Lindquist and citms studies
have been used extensively by COSRIMS and its Panels. For brevity we
refer to these simply as the Lindquist survey and the CBMS survey.
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Mathematics departments in colleges and universities today serve
a wide variety of student majors. They train future mathematical
scientists, both for academic work and for work in industry and
government, and, as it has for centuries, mathematical training plays
a key role in the education of physical scientists and engineers. In
recent years mathematical methods have provcd to be of increasing
use in the biological and social sciences as well, and so the mathe-
matician is now acquiring another large group of clients. Second-
ary and elementary school teachers form yet another increasing
contingent. Some knowledge of mathematics has traditionally been
recognized as a significant part of the general education of a college
student; today this knowledge is being broadened to include some
appreciation of the widely useful tool of computers.

Chapter 3 of the report of our Panel on Undergraduate Edu-
cation1 surveys in detail these various components of demand for
mathematical training; and, on this basis, Chapter 4 of that report
makes an assessment of the resulting needs for college and university
staff in the mathematical sciences. We give a briefer discussion along
similar lines in the sections below, on total mathematical-science
course enrollments and on quality and distribution of mathematical-
science faculty.

The first thing to be emphasized about the recent history of
undergraduate education in the mathematical sciences is the extent
of its growth and change over the past 25 years. Our Panel on
Undergraduate Education has documented this vividly in Chapter
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2 of its report, presenting eight detailed case histories of changes at
individual colleges and universities. While these institutions repre-
sent considerable variety in their educational goals and in their
clientele, they reveal many similar trends over the last quarter cen-
tury with regard to the mathematical sciences. The following items
occur repeatedly: very significant increases in mathematics-course
enrollments; spectacular increases in numbers of mathematics
majors; new undergraduate major programs in the mathematical
sciences; many new advanced courses; increased undergraduate
enrollments in graduate courses; impact of improved high school
curricula on beginning college mathematics courses; special new
courses for statistics, computing, and the social sciences; significant
increases in staff size; difficulties in recruiting new staff.

THE INCREASE IN MATHEMATICS MAJORS

Perhaps the most striking item on the above list is the greatly
increased number of mathematics majors. This is documented more
precisely in Table 1, which shows comparative tabulations and
projections* by K. A. Simon and M. G. Fullam of the U.S. Office
of Education.17

These tabulations show that over the years 1955-1965, during
which college enrollments roughly doubled, the annual number of
bachelor's degrees granted in mathematics and statistics increased
by a factor of 4.9, while for engineering, the physical sciences, and
the biological sciences the corresponding factors were only 1.6, 1.7,
and 2.8, respectively. The projections shown for the years 1965
1975 call for the annual number of bachelor's degrees in mathe-
matics and statistics to increase by a factor of 3.0, while for engineer-
ing, the physical sciences, and the biological sciences the correspond-

*We have rounded off these projections to two significant figures, though, no
doubt, for a year as remote as 1976 it is at most the initial figure that is at all
likely to be borne out. The projections are based on the assumption that the
percentage distribution of degrees by field will continue the 1955-1966 trends.
This is, we feel, a reasonable basis for projections; but should it turn out to be
only indifferently fulfilled, the projections could, of course, be even more in
error. For instance, projections from the 1955-1959 trends on this basis would
hardly have predicted the depression in numbers of engineering bachelor's de-
grees that actually occurred in the early 1960's, as shown in Table 1.
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TABLE 1 Earned Bachelor's Degrees, 1955-1966, with Projections
to 1976

YEAR

DIATIIENINIICS

AND STATISTICS ENGINEERING

PHYSICAL

SCIENCES

BIOLOGICAL

SCIENCES

EARNED, 1955-1966

1954-1955 4,034 22,589 10,516 9,050
1955-1956 4,660 26,312 11,672 12,566
1956-1957 5,546 31,211 12,934 13,868
1957-1958 6,924 35,332 14,352 14,408
1958-1959 9,019 38,134 15,460 15,149
1959-1960 11,437 37,808 16,057 15,655
1960-1961 13,127 35,866 15,500 16,162
1961-1962 14,610 34,735 15,894 17,014
1962-1963 16,121 33,458 16,276 19,218
1963-1964 18,677 35,226 17,527 22,827
1964-1965 19,668 36,795 17,916 25,305
1965-1966 21,190 35,830 18,020 25,680

PROJECTED TO 1976

1966-1967 24,000 37,000 19,000 28,000
1967-1968 31,000 43,000 23,000 33,000
1968-1969 36,000 45,000 24,000 37,000
1969-1970 38,000 44,000 26,000 38,000
1970-1971 41,000 43,000 27,000 39,000
1971-1972 45,000 44,000 28,000 41,000
1972-1973 49,000 44,000 30,030 44,000
1973-1974 55,000 45,000 31,000 47,000
1974-1975 60,000 46,000 33,000 50,000
1975-1976 65,000 46,000 35,000 53,000

ing projected factors of increase are 1.3, 1.9, and 2.0, respectively.
Admittedly, projections can be no more than rough guides; and, in
fact, discrepancies for 1965 between the above actual figures and the
Office of Education's slightly earlier projected figures18 suggest that
the above projected factors of increase for 1965-1975 might turn
out to be somewhat high for mathematics and statistics and some-
what low for the biological sciences. Even so, there seems little doubt
that increased numbers of majors will contribute considerably to
college staffing strains in the mathematical sciences over the next
few years.
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TOTAL ENROLLMENTS IN THE MATHEMATICAL
SCIENCES

The Lindquist and CBMS surveys together show that over the period
from academic years 1960-1961 to 1965-1966 the total enrollment
in undergraduate mathematical-science courses increased from
744,000 to 1,068,000, or 44 percent. Since the most closely compar-
able general enrollment figures show a 48 percent increase over this
same period, we conclude that for this period the growth in under-
graduate mathematical-science enrollments has been roughly the
same as the growth in college enrollments generally. (See reference
16.)

For the succeeding period from 1965-1966 to 1970-1971, however,
we have reason to believe that this situation will change consider-
ably. If the projections below, which are a more conservative ver-
sion of those of our Undergraduate Panel, are at all near the mark,
then mathematical-science enrollments will increase by more than
70 percent over this period, while general enrollments will increase
by only around 30 percent. The remainder of this section presents
the case for these projections.

For the academic year 1965-1966 the CBMS survey found that in
the four-year colleges and universities of the United States there
were some 1,068,000 undergraduate course enrollments in the mathe-
matical sciences. For these colleges and universities, the U.S. Office
of Education predicts17 a 29 percent rise in total undergraduate
enrollments over the period 1965-1970. Thus, taking 29 percent of
1,068,000, one might predict a rise over this period of approximately
310,000 undergraduate course enrollments in the mathematical sci-
ences. We believe this to be a serious underestimate because of two
factors. The first of these factors is the projected faster-than-average
growth in the number of majors in certain fields where it is custom-
ary to take a greater-than-average amount of mathematical course
work. The second is the fact that majors in several fields are now
beginning to take more courses in the mathematical sciences than
formerly and by 1970 will almost surely be taking significantly more
such courses on the average than in 1965.

Chapter 4 of the report of our Panel on Undergraduate Edu-
cationl has analyzed, for each of the principal fields concerned, the
extent to which one or both of these factors may be expected to
increase mathematical-science course enrollments over the 1965
1970 period, above and beyond the 310,000 attributable to the gen-

1
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TABLE 2 Projected Mathematical-Science Course-Enrollment In-
crease, 1965-1970

FACTOR INCREASE

General growth 310,000
Mathematical-sciences excess 81,300
Physical-sciences excess 37,000
Engineering excess 37,000
Biological-sciences excess 19,500
Psychology excess 12,500
Social-sciences excess 67,500
Elementary-teacher excess 60,000
Introductory-computing excess 172,000

TOTAL 796,800

eral 29 percent growth predicted for college enrollments over this
period. This analysis is based on the following: (1) the U.S. Office
of Education projectionsvi al-ding the number of bachelor's de-
grees to be expected in various fields in 1970; (2) information from
the CBMS survey regarding the average number of mathematical-
science courses taken by majors in these various fields as of 1965;
and (3) the Committee on the Undergraduate Program in Mathe-
matics (CUPM) panel recommendations,19-23 as an indication of
the number of mathematical-science courses to be reasonably antic-
ipated for majors in these various fields by 1970.

We and our Panel on Undergraduate Education are very much
aware of the oversimplifications and possibilities for error involved
in making, for several years ahead, any course-enrollment projec-
tions whatever. For this reason, the Panel on Undergraduate Edu-
cation has, in Chapter 4 of its report, considered the consequences
of varying its projected data and its hypotheses in several reasonable
ways. The prediction of intensification, for several years to come, of
the shortage of qualified college teachers of the mathematical sci-
ences is found to be stable under all these variations. Our own
figures, shown in Table 2, provide a further variation. It too pre-
dicts an intensified shortage in the supply of qualified teachers over
the next few years. It is for these reasons that we feel some confidence
in this prediction.

With these qualifications and reservations, we present, in Table
2, our best effort to project mathematical-science course-enrollment
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increases from 1965 to 1970. The first item in this tabulation is the
one mentioned earlier: the basic 310,000 increase in mathematical-
science course enrollments to be anticipated simply from the U.S.
Office of Education's prediction of a 29 percent general increase in
college enrollments.

For the mathematical sciences, the physical sciences, and engi-
neering, the projected excesses shown in Table 2 are those computed
by our Panel on Undergraduate Education. The mathematical-
sciences excess arises from the more rapid growth in mathematical-
science majors already discussed, together with the fact that such a
major accounts for approximately six course enrollments in his field
during his undergraduate years. The physical-sciences excess raises

from two factors: first, a higher-than-average projected rise ia the
number of majors, who in 1965 typically took approximately three
mathematical-science courses during their undergraduate years; and
second, the prediction, based on reference 23, that by 1970 these
majors will be taking four rather than three such courses. For engi-

neering, the projected 1965-1970 increase in majors is at 21 percent
instead of the general figme of 29 percent, which by itself would
yield a deficiency rather than an excess in mathematical-science

course enrollments; but this deficiency is more than offset by the
tendency, already beginning to be seen, for the undergraduate engi-
neering curriculum to shift from a five-semester to a seven-semester
sequence in the mathematical sciences (see reference 24).

For the biological sciences, psychology, and the social sciences,
the figures shown in Table 2 are just half as large as those in the
report of the Panel on Undergraduate Education. Our figures
correspond to the assumption that, on the average, by 1970 half of
the majors in these fields will be taking, during their undergraduate
careers, one more mathematical-science course than was typical for
the majors in these fields in 1965. (The Panel on Undergraduate
Education made the assumption that by 1970 all majors in these
fields would on the average be taking one more such course.)

With regard to elementary school teachers, we recognize that a
strong movement is already under way to stimulate the upgrading
of their preservice training in mathematics. The curm report23
and regional conferences of elementary teachers sponsored by the
cum25 have done much in this respect. As a result, we feel that, on
the average, perhaps two thirds of these teachers will by 1970 be
taking one more mathematics course during their undergraduate
years than in 1965 (whereas the Panel on Undergraduate Educa-
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tion felt it likely that, on the average, all elementary teachers would
be taking one more such course by 1970).

It is particularly difficult to make predictions regarding the
rapidly growing and changing field of computing. The recently
published Pierce report3 recommends that by academic year 1970
1971 all college students should have an introductory course in
computing. It may turn out that the ideal place for such an intro-
ductory course is in high school rather than college; or it may turn
out that introductory computing courses oriented toward various
subject-matter fields will tend to be taught in various college de-
partments, much as elementary applied statistics courses tend to be
today. The most likely assumption, however, seems to be that the
burden of teaching such courses will fall on the college faculty in
computer science and the mathematical sciences generally. In any
event, our Panel on Undergraduate Education has made its projec-
tions on the assumption that half of the 5,500,000 undergraduates
in four-year colleges in 1970 will take, at some time during their
four-year undergraduate careers, a one-semester college course in
computing, and that half of these are not already included else-
where in the tabulation in Table 2. (This last is certainly not un-
reasonable in view of the present distribution of college majors.)
This yields the equivalent of about 172,000 (academic-year) course
enrollments for 1970, and it is this figure that appears in Table 2.

Table 2 yields a total projected course-enrollment increase of
796,800. Dividing this by the course-enrollment total of 1,068,000
for academic year 1965-1966, we find that, over the 1965-1970
period, mathematical-science course enrollments are projected to
increase by approximately 74 percent, which is more than 2.5 times
the 29 percent by which general college enrollments are projected to
increase over this period.

QUALITY AND DISTRIBUTION OF
MATHEMATICAL-SCIENCE FACULTY

The CBMS survey found that for the four-year colleges and univer-
sities of the United States the 1,068,000 undergraduate mathemati-
cal-course enrollments of academic year 1965-1966 were handled by
a full-time faculty of some 10,750, aided by a quite small part-time
faculty and, in universities, graduate assistants. This yields a ratio
of one full-time faculty member to approximately 100 course en-
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TABLE 3 Highest Earned Degree, 1965-1966

DECREE NUMBER

Doctorate (mathematical sciences) 5,000
Doctorate (education) 500
Doctorate (other fields) 200
Master's degree -1,650
Bachelor's degree 400

1 OTAL 10,750

rollments. Now the preceding section estimated some 796,800 more
course enrollments in the mathematical sciences for academic year
1970-4971 than for academic year 1965-1966. Therefore, this
course-enrollment increase will require some 8,000 more full-time
faculty in the mathematical sciences for academic year 1970-1971
than for academic year 1965-1966.

We now try to assess what the quality of the additional faculty
is likely to be, using as a rough measure of faculty quality the
proportion of full-time faculty holding doctorates, as is done in
Cartter's studies.26,* For academic year 1965-1966, the alms survey
found the 10,750 full-time faculty in the mathematical sciences to
have highest earned degrees distributed as shown in Table 3.
Thus in academic year 1965-1966 some 53 percent of the mathe-
matical-science faculty held doctorates in some field, a little over 46

* Academic degree is, of course, only one dimension in the measure of quality.
It is clear, for instance, that one is qualified to provide instruction in a core
mathematics topic only if he has a thorough grasp of the substantive material of
that topic, of its relation to mathematics at large, and of the manner in which
others will build upon the foundation it provides. By the same token, one is
qualified to provide instruction on a facet of the use of mathematics only if
(again) he has a thorough grasp of the mathematical disciplines he must use, of
the facets of science or technology under study, and of the attitudes and objec-
tives that are appropriate to the questions with which he is coping. Thus, not
only must there be an adequate level of competence as measured by academic
degree acquisition, but there must also be a breadth of topical competence
measured in terms of ranges of interest, attitudes, and scientific literacy.

Clearly, in institutions that are only beginning to develop comprehensive pro-
grams, these requirements of quality cannot be met immediately, but they should
be used as guidelines for that development. A minimum first step requires that
the means be found to assist faculty members to maintain contact with the
changes in relevant fields of knowledge.
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percent being in the mathematical sciences. Shortly we shall dis-
cuss the distribution of doctorate-holding faculty among colleges
and universities, which is far from uniform.

To see how the percentage of doctorates is likely to change over
the next few years, we now need an estimate of the number of new
PhD's who will enter mathematical-science teaching in four-year
colleges and universities over the period 1965-1970. For this we take
the estimate of our Panel on Undergraduate Education, which found
this number to be approximately 3,300 (see Chapter 4 of their
report1). Their analysis followed Cartter's mode127 and used his
figure of 2 percent per year for attrition (due to death, retirement,
and net outflow to other professions) of doctorate holders from
college and university teaching. Also, in accord with information
from the CBMS survey, they assumed that 70 percent of the newly
produced mathematical-science PhD's will go into college and uni-
versity teaching, as opposed to Cartter's value of approximately 33
percent for all academic fields combined.*

To collect our figures, we have estimated that over the period
1965-1970 some 8,000 new full-time staff members will be needed in
mathematical-science teaching in the four-year colleges and uni-
versities. We also have the estimate of net inflow of some 3,300
PhD's into such teaching during this period. Thus only about 41
percent of the new faculty will have doctorates; hence, if these
estimates are at all close, the percentage of doctorate holders on
mathematical-science faculties, currently about 53 percent, will
decline.

The distribution of the doctorate-holding faculty is far from uni-
form, the universities having more than twice the fraction of the
total doctorate-holding faculty that liberal arts and teachers' col-
leges have, while the latter carry slightly more of the total under-
graduate teaching load. Specifically, the CBMS survey reveals that for
academic year 1965-1966 the distribution of doctorate-holding
faculty was approximately that shown in Table 4, which should be
read with the following comments in mind.

First, it is not surprising that the universities have a much higher

* With the strong demand from other quarters, it is a distinct possibility that in
the future fewer than 70 percent of the new PhD's will go into academic work.
This could intensify the college teacher shortage predicted here. In any case,
it should be emphasized that the prediction of a growing shortage is stable under
any reasonable variation in the particular percentages used for attrition and for
new PhD's entering teaching.

.
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TABLE 4 Distribution of Doctorate-Holding Faculty, 1965-1966

TYI'E OF INSTITUTION

PERCENTAGE OF THE PERCENTAGE OF ME

UNDERGRADUATE DOCTORATE-IIOIDING

TEACHING LOAD FACULTY

Universities 45 63
Liberal arts and teachers' colleges 49 30
Technological institutes 6 7-
TOTALS 100 100

fraction of a limited doctorate-holding faculty, since it is univer-
sities that carry the bulk of graduate instruction and the direction
of doctoral aad postdoctoral research. Second, as far as the first two
undergraduate years are concerned, the proportion of PhD's teach-
ing at universities is much more closely comparable with that at
liberal arts colleges and teachers' colleges, because of the wide
employment of graduate assistants in such teaching at universities.
In this connection, the CBMS survey has found that, in the median
university, 40 percent of the freshmansophomore teaching load is
carried by graduate assistants, and, in 38 percent of the uniVersities,
at least half of the freshmansophomore load is carried in this way.

In Chapter 8, we discuss (see page 145) Graduate Student Par-
ticipation in Undergraduate Teaching in universities and suggest
improvements for the future. In Chapter 9, in the discussion of The
College Teacher (page 147), we consider what may be done to meet
anticipated shortages in qualified faculty in the mathematical sci-
ences, especially in the weaker colleges and in certain critical fields.

THE JUNIOR COLLEGES

There are now more entering freshmen in junior colleges than in
universities, and over one third of all entering freshmen are junior
college students. This statement is impressive even when it is under-
stood that the term "junior colleges" here includes two-year techni-
cal institutes, and that the data include part-time students and
students in occupational or general studies programs not chiefly
creditable toward a bachelor's degree. The actual figures, from the
U.S. Office of Education,28 are shown in Table 5. Total enrollment
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TABLE 5 First-Time Enrollments in Fall 1966, Nondegree Credit
and Part-Time Students Included

NUMBER

(THOUSANDS PERCENTAGE

OF STUDENTS) OF TOTAL

Universities 427 27
Other four-year institutions 591 38
Two-year institutions 547 85

TOTAIS 1,565 100

figures with a breakdown into full-time and part-time students are
also instructive and are given in Table 6. These figures show that in
1966 two-year institutions accounted for 21 percent of all under-
graduate enrollments, 17 percent of the full-time ones, and 30 per-
cent of the part-time ones.

Enrollments in junior colleges are geographically heavily con-
centrated in certain states, reflecting not only differences in popu-
lation density but also differences in state policy regarding the
establishment and expansion of these institutions. Thus 38 percent
of all junior college students are in California, and slightly over 50
percent attend junior colleges in California, Florida, or Illinois.

Against this background of general student enrollments we now
give a few results from the 1966-1967 csms survey of the mathe-

TABLE 6 Total Enrollments in Fall 1966, Nondegree Credit and
Part-Time Students Include&

THOUSANDS OF STUDENTS

TOTAL FULL-TIME PART-TIME

Universities 2,482 1,789 693
Other four-year institutions 2,626 1,941 685
Two-year institutions 1,331 739 591

All institutions 6,439 4,469 1,969

aFigures from reference 20.
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TABLE 7 Distribution of Mathematical-Science Course Enrollments
in Fall 1966, by Size of Junior College

INSTITUTIONAL SIZE

(NO. OF STUDENTS)
NO. OF COURSE

ENROLLMENTS

DISTRIBUTION

(%)

5,000 and over 107,000 31
2,000 to 4,999 101,000 30
1,000 to 1,999 55,000 16
Under 1,000 82,000 23

All institutions 3.18,000 100

matical sciences in junior colleges, the first such survey ever made.
A much more thorough presentation and discussion appears in the
CBMS Survey Committee's report,16 Volume I, Chapter V. Numbers
of mathematical-science course enrollments, broken down according
to the size of the institution, are given in Table 7.

Enrollments of entering freshmen in mathematics courses tend
to be at less advanced levels for junior colleges than for four-year
colleges, as Table 8 shows. In the junior colleges of largest enroll-
ment (over 5,000), 55 percent of all mathematics course enrollments
by entering freshmen for the fall of 1966 were below the level of
college algebra and trigonometry. While junior college freshmen
tended to have a generally lower attainment level in high school
mathematics, the differences shown in Table 8 appear to reflect not
so much differences in ability as differences in goals. A considerable

TABLE 8 Percentage Distribution of Entering Freshmen Enroll-
ments at Three Mathematics Course Levels

LEVEL

TWO-YEAR FOUR-YEAR

INSTITUTIONS, INSTITUTIONS,

FALL 1966 FALL 1965

Below college algebra
and trigonometry 42% 19%

College algebra,
trigonometry, and equivalent 44% 49%

Analytic geometry,
calculus, and above 14% 33%



Undergraduate Education 133

fractionperhaps 30 percentof the junior college students aim
for immediate occupations in business and technology rather than
for careers in teaching or other professions. (Most of the remaining
70 percent are students intending to transfer to four-year colleges
upon graduation.)

Among junior college students, those in occupational curricula
have mathematical needs and abilities somewhat different from
those intending to transfer to four-year colleges. Some of the
strongly occupation-oriented mathematics is, in fact, taught outside
mathematics departments altogether. The most common example
of this is business mathematics taught in a division of business.
Other examples are precalculus technical mathematics and statistics.

It is to be emphasized that industry needs technical aides who are
graduates of strong two-year college programs. In fact, a spokesman
for a prominent industrial laboratory has indicated that although
salaries and opportunities for advancement are good, well-trained
technical aides are often harder for industry to find in needed num-
bers than are those with more advanced professional training.

THE MATLEMATICS FACULTY IN JUNIOR
COLLEGES

In junior colleges in 1967, the full-time mathematical-science
faculty numbered approximately 2,700; and taking into account
part-time faculty members, the full-time equivalent faculty was
approximately 3,100. Their training was overwhelmingly at the
master's level: 84 percent had the master's as their highest degree,
12 percent the bachelor's, and about 4 percent the doctorate. The
field of highest level of training was within the mathematical sci-
ences for only 62 percent; for 24 percent it was mathematics edu-
cation, and for 14 percent it was in some other field.

To the question, "Do you have difficulty in recruiting and keep-
ing an adequate mathematics faculty?" about 73 percent of the
junior college mathematics departments responding to the CBMS
questionnaire said, somewhat surprisingly, that they did not. Prob-
ably the principal reason for this is that the better high school
teachers form an enormous and highly available pool of supply.
Another reason is that, even in comparison with the private four-
year colleges, the public junior colleges can offer a better median
salary to professors.
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Whether this faculty is indeed adequate, and whether it will
prove adequate for the future, may be questioned. The Mathe-
matical Association of America, in its resolutions to the Congress
and the National Science Foundation,4 states that the junior col-
leges appear to form the weakest link in the chain of higher educa-
tion in mathematics. Certainly a junior college teacher now qualified
to teach only the most elementary mathematics courses may in the
future find nothing he can teach; for the preparation of entering
freshmen will undoubtedly continue to improve, and remedial
teaching will increasingly be done by such techniques as programmed
instruction. In its recent report,29 an ad hoc CUPINI Panel on the
Qualification of College Teachers of Mathematics states that a
strong mathematics master's degree (what it calls the "first graduate
component") ". . . should represent adequate training for teaching
transfer students in junior colleges, provided the teacher continues
to remain intellectually alive." Although there are no firm percent-
ages, many with experience gained in teaching-institute programs
for college teachers feel that numerous junior college teachers with
master's degrees fail to meet these criteria (see reference 16, Chapter
5)

In summary, the junior colleges form a fast-growing but geo-
graphically highly nonhomogeneous component of higher educa-
tion. In these colleges, a strong and continuing effort will be
needed to raise and maintain faculty professional standards in the
mathematical sciences. The university mathematical community
can contribute to this in two ways, primarily: first, by producing
new junior college faculty with strong mathematical training
through the master's level; and, second, by providing opportunities
for appropriately oriented continuing education for those already
doing mathematical-science teaching in junior colleges. The first of
these ways underlines the fact that there is need for federal support
for graduate mathematical training that stops at the master's level,
as well as for PhD training. The second is a part of the effort in
continuing mathematical education for college teachers, both
academic-year training and summer training. This too will require
strong federal support.
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The mathematical sciences have shared in the general accelerated
growth that has marked graduate education in all the sciences since
the late 1940's. Especially at the level of training for the doctorate,
the United States has made impressive gains in the quality of its
mathematical education. This has been reflected in increased inter-
national recognition of the research accomplishments of American-
trained American mathematicians (see the section on The Position
of the United States in Mathematics, page 10). It would also be
widely agreed by professionals in the field that the number of truly
distinguished university centers for mathematical research in the
United States has roughly tripled during the postwar period, from
approximately three to approximately nine (see Appendix E).

While U.S. graduate mathematical education has been growing
in quality, it has also been growing in breadth. This is reflected in
a broader span of courses and areas for research, as well as in the
increasing election of graduate courses in the mathematical sciences
by majors from other fields. It is also reflected in the creation and
growth of new academically oriented professional societies in the
mathematical sciences. In the early 1930's, there were just three
such professional societies: The American Mathematical Society at
the graduate and research level, the Mathematical Association of
America at the collegiate level, and the National Council of
Teachers of Mathematics at the secondary and elementary school
levels. Increased intereit in mathematical logic, a border area be-
tween mathematics and philosophy, led to the founding of the
Association for Symbolic Logic in 1934. The Institute of Mathemati-

135
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cal Statistics followed in 1935. During the postwar period, new
applications of mathematics and new mathematical tools and tech-
niques (see Chapters 5 and 6) resulted in the formation of four new
professional societies in the mathematical sciences: The Society for
Industrial and Applied Mathematics, the Association for Comput-
ing Machinery, the Operations Research Society of America, and
The Institute of Management Sciences. In addition, today there
exists an organization, the Conference Board of the Mathematical
Sciences, which comprises most of the professional societies in the
field and constitutes a medium through which their representatives
can meet for exchange of information and discussion of problems of
common concern.

THE MASTER'S DEGREE

Corresponding to Table 1 (see page 123) for bachelor's degrees, we
present in Table 9 the comparative figures of the U.S. Office of
Education17 for numbers of master's degrees awarded in mathe-
matics and statistics, engineering, the physical sciences, and the
biological sciences during the period 1955-1966, with projections*
to 1976.

As in the case of bachelor's degrees, the annual number of
master's degrees granted shows a much greater factor of gain over
the years 1955-1965 for mathematics and statistics (5.6) than for
engineering (2.7), the physical sciences (1.9), or the biological
sciences (2.2). The same is true of the factors of gain projected for
1965-1975: for mathematics and statistics this is 3.5, while for engi-
neering, the physical sciences, and the biological sciences these
projected factors are 2.6, 2.1, and 2.3, respectively. The projected
factor of increase that Table 9 yields for mathematics and statistics
may be high, because the assumption on which it is based, that the
percentage distribution of degrees by field will continue the 1955
1965 trends, may not be completely fulfilled. On the other hand,
the category "mathematics and statistics," which for the period
1955-1965 included virtually all the degrees of that per5od in the
mathematical sciences, may miss significant numbers of these de-
grees in the period 1965-1975, especially degrees granted in the
rapidly proliferating graduate departments of computer science.

It is clear that the standards and requirements for the master's

*Rounded by us to two significant figures. See footnote on page 122.
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TABLE 9 Earned Master's Degrees, 1955-1966, with Projections to
19'/6

YEAR

MATIIEMATICS

AND STATISTICS ENGINEERING

PHYSICAL

SCIENCES

BIOLOGICAL

SCIENCES

EARNED, 1955-1966

1954-1955 761 4,484 2,544 1,609

1955-1956 892 4,724 2,653 1,754

1956-1957 965 5,233 2,704 1,801

1957-1958 1,234 5,788 3,034 1,852

1958-1959 1,509 6,753 3,202 2,007

1959-1960 1,765 7,159 3,387 2,154

1960-1961 2,238 8,178 3,799 2,358

1961-1962 2,680 8,909 3,929 2,642

1962-1963 3,323 9,635 4,132 2,921

1963-1964 3,603 10,827 4,567 3,297

1964-1965 4,294 12,056 4,918 3,604

1965-1966 5,220 13,990 5,470 4,390

PROJECTED TO 1976

1966-1967 5,900 15,000 5,800 4,600

1967-1968 6,400 16,000 6,000 4,700

1968-1969 7,400 18,000 6,500 5,200

1969-1970 9,300 22,000 7,800 6,300

1970-1971 11,000 25,000 8,800 6,900

1971-1972 12,000 26,000 8,900 7,100

1972-1973 13,000 27,000 9,200 7,400

1973-1974 14,000 29,000 9,800 7,900

1974-1975 15,000 31,000 10,000 8,200

1975-1976 17,000 34,000 11,000 8,800

degree vary widely, though too little is known about this in a com-
prehensive way. In some departments, a master's degree is awarded
simply upon the completion of a specified amount of course work
beyond the bachelor's degree; sometimes the passing of comprehen-
sive examinations (written, oral, or both) is required; in some pro-
grams a master's thesis is required; and in some departments a
master's degree is awarded as a kind of "consolation prize" to those
who try and fail to complete the requirements for a doctorate. For
the mathematical sciences, about 60 percent of the master's degrees
currently being awarded are granted by departments of mathe-
matics that also offer a doctorate, and for these departments the
CBMS survey furnishes a bit more information. Of the students ad-
mitted to study toward graduate degrees in such departments in the
fall of 1965, the department expected about 51 percent to get only
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mathematics master's degrees, about 12 percent to get only master's
degrees in the teaching of mathematics, and about 37 percent to get
doctoral degrees. Of the last group, roughly half already had
master's degrees. At about one fourth of these departments a thesis
is definitely required for a master's degree; at about one half there
are two alternative master's programs, one involving a thesis and
one not; at the others no thesis is required, the requirement tending
to consist of course work plus various kinds of comprehensive ex-
aminations. On the average, about one full year of course work is
required for a master's degree in the mathematical sciences, and
the median elapsed time from bachelor's to master's degree is be-
tween one and two years.

Many of those studying only for the master's degree are preparing
to be mathematics teachers at the high school level. Though high
school teachers usually teach more than one subject, it has been
estimated that those high school teachers whose primary respon-
sibility is mathematics teaching currently number approximately
120,000; and of these perhaps as many as 20 percent have master's
degrees either in mathematics or in the teaching of mathematics. In
addition, some mathematics MA's will certainly continue to find
teaching positions in four-year colleges and universities. As we have
seen (Table 3, page 128), in 1965 some 4,650, or 43 percent, of the
fulltime faculty of 10,750 in such institutions had the master's
degree as their highest earned degree. Junior colleges offer a still
small but fast-growing field of opportunity for those with mathemati-
cal training through the master's level. In the fall of 1966, according
to the CBMS survey, there were about 2,700 mathematics teachers in
junior colleges, of whom 84 percent, or 2,300, had master's degrees.
(About 4 percent had doctorates, and the other 12 percent had
bachelor's degrees.) Those employed by industry or government
whose major educational field was mathematics now probably num-
ber well over 30,000 (see references 30 and 31); and of these approxi-
mately one quarter have master's degrees as their highest earned
degree (see reference 31, page 22).

THE DOCTORATE IN THE MATHEMATICAL
SCIENCES

As we have seen, the annual number of bachelor's degrees and the
annual number of master's degrees showed much stronger gains
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TABLE 10 Earned Doctor's Degrees, 1955-1966, with Projections to
1976

YEAR

MATHEMATICS

AND STATISTICS ENGINEERING

PIIYSICAL

SCIENCES

BIOLOGICAL

SCIENCES

EARNED, 1955-1966

1954-1955 250 599 1,713 994

1955-1956 235 610 1,667 1,025

1956-1957 249 596 1,674 1,103

1957-1958 247 647 1,655 1,125

1958-1959 282 714 1,812 1,05
1959-1960 303 786 1,838 1,205

1960-1961 344 943 1,991 1,193

1961-1962 396 1,207 2,122 1,338

1962-1963 490 1,378 2,380 1,455

1963-1964 596 1,693 2,455 1,625

1964-1965 688 2,124 2,829 1,928

1965-1966 770 2,350 2,960 2,030

PROJECTED TO 1976

1966-1967 860 2,700 3,100 2,100

1967-1968 900 3,100 3,500 2,400

1968-1969 1,100 3,600 3,900 2,700

1969-1970 1,200 4,000 4,000 2,700

1970-1971 1,g00 4,100 4,000 2,700

1971-1972 1,400 4,600 4,200 2,900

1972-1973 1,800 5,700 5,000 3,400

1973-1974 2,000 6,600 5,600 3,800

1974-1975 2,100 6,900 5,500 3,800

1975-1976 2,200 7,300 5,600 3,800

over the period 1955-1965 for mathematics and statistics than for
engineering, the physical sciences, or the biological sciences; and the
same was true to a more moderate extent of the projected gain
factors for the period 1965-1975. For doctoral degrees the corre-
sponding statistics and projections* of the U.S. Office of Educa-
tion,17 shown in Table 10, do not show any such decisively stronger
gains for mathematics and statistics. The factors of gain in these
numbers of doctoral degrees for the period 1955-1965 are: mathe-
matics and statistics, 2.8; engineering, 3.6; physical sciences, 1.7; and
biological sciences, 1.9. For the period 1965-1975 the corresponding

*Rounded by us to two significant figures. See footnote on page 122.
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projected factors are: mathematics and statistics, 3.0; engineering,
3.2; physical sciences, 1.9; and biological sciences, 2.0.

For doctoral degrees, then, it is engineering, and not mathematics
and statistics, that shows the highest factors of gain. While these gain
factors arc higher for mathematics and statistics than for the physi-
cal or biological sciences, the "conversion factor" from master's de-
gree to doctorate is lower. Allowing for a time lag of two to four
years between receipt of the master's and doctoral degrees, we can
compare the total masters production over a period (Table 9) with
the total PhD production over a similar period (Table 10) three
years later. When this is done, the following conversion factors are
obtained, representing the approximate percentage of masters in a
ten-year period who go on to get a doctorate three years later:

Mathematics and statistics 30%
Physical sciences 80%
Biological sciences 73%

Without better knowledge than we have of the flow of students
through various degree levels and into various occupations, we can
account only speculatively and tentatively for this relatively small
conversion factor for mathematics and statistics. One reason for it
appears to be the very considerable proportionquite a large ma-
jorityof mathematics graduate students working only for the mas-
ter's degree, many of them studying to be teachers. As noted above
in our discussion of the master's degree, even in mathematics depart-
ments offering the PhD degree this currently amounts to approxi-
mately 63 percent of those studying for graduate degrees; and
presumably it includes a much larger percentage of those studying in
graduate mathematics departments in which only a master's degree
is offered. Another reason may be simply that doing research ac-
ceptable for the PhD degree is harder in mathematics than in other
fields, leading fewer to try for this degree in mathematics and lead-ing to a higher attrition rate among those who do. Research for the
PhD degree in mathematics has traditionally meant the discovery of
new mathematics, as contrasted with the scholarly synthesis of pre-vious work often found in the humanities or the obtaining of newexperimental results by established techniques often found in the
laboratory sciences.
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THE DOCTORATE OF PHILOSOPHY AND
INTERMEDIATE DEGREES

For academic fields generally, questions have been raised concerning
the relevance of the PhD degree for college teaching [see, e.g.,
E. Walters and F. W. Ness, "The Ph.D.: New Demands, Same Old

Response," Saturday Review, 49, 62 (January 15, 1966)1 Alternative

programs and doctorates have from time to time been proposed

(notably, in the mathematical sciences, an expository-thesis program

leading to a proposed "Doctor of Arts" degree), but these have re-
ceived little support. Our Panel on Graduate Education has given
careful consideration to the PhD and intermediate degrees in mathe-

matics as degrees for college teachers. The following discussion is
based closely on their report.

The PhD degree in the mathematical sciences has a unique value
for university and college teachers in this field. Mathematics and its
applications cannot be learned passivelythat is, not merely by
listening, reading, and studying. It is only by doing substantial prob-
lems, that is, by a genuine apprenticeship in research, that a grad-
uate student can really absorb the mathematical way of thinking.

The writing of a PhD thesis is an exciting and important phase in
the development of a mathematician. He is at last functioning as a
professional and not merely as a student. He realizes the difficulties,
frustrations, and sheer hard work that the creation of mathematics
requires and so will view with deeper insight the efforts of his col-

leagues to do mathematics. His sense of participation as a contrib-
utor to his subject will give him a greater authority and involvement

as a teacher. The attainment of a PhD degree is an excellent scheme

for making students gain the insight that comes from doing research.

This insight is more important than ever now that purely routine

use of mathematics is becoming totally inadequate for applications

in other fields. For all these reasons it is highly desirable that, where-

ever possible; mathematical-science faculty members in universities

and colleges should have the PhD degree in their field. (Compare the

statement on the role of the PhD as discussed in reference 29.)

There are, of course, quite a few universities in which all, or vir-

tually all, the full-time faculty members of the mathematics depart-

ment do have PhD degrees. These would certainly include the 25
universities with mathematics departments rated as "excellent" or

"strong" in over-all faculty quality listed on page 66 of Cartter's
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study.32 As far as such universities are concerned, there have quite
recently been indications of "saturation at the top," reflected in the
fact that young mathematics PhD's of high ability and research
promise are, in increasing numbers, finding positions in a broader
range of universities. This means that the time is ripe for systemati-
cally developing excellence in more mathematics departments
through such programs as the National Science Foundation's Sci-
ence Development Programs (see the discussion of Developmental
Block and Area Grants on page 174).

In the country's colleges and universities in general, however, the
problems of providing adequate numbers of PhD faculty in the
mathematical sciences seem overwhelmingly severe. The cBms survey
has determined that, as of 1966, over 70 percent oE the liberal arts
colleges and teachers' collegesinstitutions that together carry
nearly half of the undergraduate teaching loadhad mathematical-
science faculties with at most one PhD member, while over 40
percent had mathematical-science faculties with no PhD members.

In the face of this situation, the Committee on the Undergraduate
Program in Mathematics has discussed and evaluated several lower
levels of preparation in its report, Qualifications for a College
Faculty in Mathematics.29 It concludes that a teacher with what it
calls the "Advanced Graduate Component" has the subject-matter
background to teach all the undergraduate mathematics except spe-
cialized courses intended for students who are going to be research
mathematicians. This Advanced Graduate Component is essentially
the present-day training for the PhD degree except for the thesis. A
student so trained at a university with a strong doctoral program
will have participated for several years in the life of a research de-
partment; he is likely to have absorbed some of the research at-
mosphere and will therefore be less narrow in his interests and
ultimately a better teacher than a student who has taken only a
minimal master's degree. Moreover, he could complete this level of
training and enter teaching in less time than he would require to
complete his PhD degree.

Discussions with representatives of four-year colleges (see, e.g.,
reports of CUPM regional conferences33) show that many colleges
would welcome teachers with the Advanced Graduate Component.
Indeed, there have been suggestions even from the universities that,
for undergraduates, the teacher who is excited about mathematics
and teaches creatively, even if he does not have the PhD degree, is
sometimes to be preferred to a teacher who holds a PhD degree.
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For example, R. L. Wilder, in his paper "The Role of Intuition"
[Science, 156, 605 (May 5, 1967) ], says:

As the student goes on to more advanced work, the intuitive component of
his training begins to assume more importance. At this stage of his career
it may be assumed that he is possibly going on to do some kind of creative
work, if not in mathematics, then in some other science. And it is desirable
that his teachers have had some experience with creative work. This does
not mean that the teacher must have a Ph.D. degree; this is a fetish I wish
we could get rid of. I would much prefer a teacher without a Ph.D. who is
excited about mathematics and can teach creatively, than a teacher with a
Ph.D. who is neither enthusiastic about mathematics nor capable of inspir-
ing his students.

Two questions now need to be answered. First, how many grad-
uate students in the mathematical sciences stop their training at the
level of the Advanced Graduate Component? Second, should this
level of training be recognized in some formal way; and if so, in
what way? There are no clear-cut answers to either question, but
some reasonable guesses and comments can be made.

Estimates based on the general study, Attrition of Graduate Stu-
dents at the Ph.D. Level in the Traditional Arts and Sciences,34 sug-
gest that, on the average, for every 100 PhD's produced there are per-
haps 15 dropouts who will have reached the Advanced Graduate
Component stage. Thus, corresponding to the approximately 800
PhD's per year currently produced in the mathematical sciences, there
are perhaps 120 who stop at the Advanced Graduate Component
level. It seems likely that this number could be considerably in-
creased, if it seems desirable to do so, by offering intermediate de-
grees to students who are enthusiastic about mathematics but either
lack the talent for original research or, possessing this talent only to
a moderate extent, are not lucky enough to find supervisors who can
help them develop it to the research-thesis level. On the other hand,
it may be guessed that the present number of students (perhaps 120 a
year) who complete PhD programs except for the thesis would not
be greatly increased if an intermediate degree were generally avail-
able; it might rise to 200 or 300 a year at the most.

As for the question of formal recognition of the Advanced Grad-
uate Component level of training, there is widespread agreement in
the mathematical community that training to this level should be
formally recognized in some way beyond the mere award of the
master's degree. According to the CBMS survey, about 70 percent of
the mathematics departments that grant the PhD degree are of this



144 The Mathematical Sciences in Education

opinion. Indeed, several distinguished universities (for example,
Yale and Michigan) have recently instituted such degrees. The ex-
istence of an intermediate degree would certainly make it easier to
assess the quality of a prospective teacher or of a college faculty.

It ;s a much more controversial question whether an intermediate
degret, should be called a doctorate of some kind. The research thesis
has been a traditional requirement for a doctorate in the mathe-
matical sciences in the United States. Many people feel that it is
dishonest to let a degree without such a thesis be called a doctorate,
and thus to acquire a measure of the prestige that is justly associated
with the present PhD degree in the mathematical sciences. A number
of colleges have difficulty in giving permanent employment to
teachers if they do not have doctorates. From one point of view, of
course, this is a good thing, since it tends to prevent the development
of a large body of college teachers who permanently occupy positions
that might otherwise come to be occupied by younger and more
highly qualified ones. It has also been argued that it would be dan-
gerous to provide an easy alternative to the PhD degree, since many
students might then be satisfied with it and so would miss the valu-
able experience of writing a thesis.

On the other hand, there are also strong arguments for recognizing
the Advanced Graduate Component as a doctorate. The most sig-
nificant one is precisely that college administrations are reluctant to
grant tenure and status to teachers who do not have doctorates. As
pointed out earlier, the best available projections indicate that there
is not going to be either a surplus or an adequacy of PhD's in the
mathematical sciences, at least for quite a few years, and conse-
quently that many college teachers will not have the PhD degree.
Many people feel that there is little more reason to suppose that the
Advanced Graduate Component teachers, more than the holders of
the PhD degree, will become mathematically fossilized. The general
effectiveness of the mathematical teaching in colleges would be in-
creased if demonstrably competent people without PhD degrees
could be retained on faculties instead of being dismissed in order to
satisfy technical requirements about the numbers of doctorate hold-
ers on faculties.

If an intermediate degree at the Advanced Graduate Component
level in the mathematical sciences were to be given only by depart-
ments that already have strong PhD programs (and want to give it),
the majority of our Panel on Graduate Education would be in favor
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of calling it a doctorate. While concurring that this level of training
should receive some formal recognition, we tend to favor Professor
Leonard Gillman's suggestion of the title, "Associate PhD," by
analogy with Associate Professor, and with emphasis on the possibil-
ity of eventual completion of a full PhD degree.

GRADUATE-STUDENT PARTICIPATION IN
UNDERGRADUATE TEACHING

There has been some criticism of the quality of mathematics teach-
ing by graduate assistants in universities. Where this criticism is
justified (and we believe that it often is not), some have adduced
as a main cause the fact that teaching assistants get little or no ex-
plicit guidance as teachers. "While there may be some justice in this,
we feel that the major cause lies rather in an unbalanced situation,
in which a fellowship or traineeship student does no teaching at all,
while a teaching assistant may do so much that he cannot do it well
and still carry on his own program of graduate studies. We propose
changes below.

Universities use graduate assistants in freshmansophomore
mathematics teaching in two ways, mainly. Where elementary
courses are taught in a number of separate sections of moderate size
(20 to 30 students), graduate assistants may teach some of these sec-
tions. Where such courses are taught in large lecture sections (up-
wards of 100 students), graduate assistants typically conduct small
recitation groups supplementing the lectures. The alms survey found
that in academic year 1965-1966 universities with PhD programs in
the mathematical sciences used large lecture sections in elementary
calculus to varying degrees: approximately 55 percent of these uni-
versities used no large lecture sections at all; approximately 18 per-
cent made some use of large lecture sections but for fewer than
three fourths of their students; and approximately 27 percent used
large lecture sections for three fourths or more of their students.

Our Panel on Undergraduate Education has pointed out advan-
tages of large lecture sections, both for the students and for the
graduate assistants, and has recommended that more teaching be
done in this way (see the section on Methods Used to Relieve the
Shortage of Teachers in Chapter 4 of reference 1). While recognizingthat there are also arguments in favor of small sections and that the
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mathematical-science departments at many universities will not find
it possible or advantageous to use large lecture sections, we believe
that this recommendation deserves serious consideration.

Whatever the method a university employs for teaching its
elementary courses, we firmly believe that it is important for all
graduate students in the mathematical sciences to have had the ex-
perience of participating in such teaching at some time during their
graduate years. Currently about 70 percent of those who obtain the
PhD degree in the mathematical sciences enter academic work.*
Certainly for these, some teaching experience during the graduate
years (and during their early postdoctoral years as well!) is a highly
practical part of career training.

We feel it is best for a graduate student in the mathematical sci-
ences to acquire this teaching experience during his middle grad-
uate-study years. He should not be burdened with teaching during
his initial year of graduate study, when he must adjust to especially
demanding and intensive course work; and during his final year of
studying for his PhD degree, he may need to devote his full energies
to research and thesis writing. Even during the middle graduate-
study years, a graduate student's teaching load should be such that
he can do justice to both his teaching and his own studies. Spe-
cifically, three to five hours a week of classroom work is as much as a
graduate assistant should have to carry.

We believe that if participation in teaching is spread in this way,
so that all or most graduate students do a limited amount of teach-
ing during their middle graduate-study years, then no graduate stu-
dent will have to do an excessive amount of such teaching, and the
over-all quality of the teaching will improve. Arranging to spread
graduate-student teaching participation in this way will plainly in-
volve some revision in the rules and administrative procedures gov-
erning fellowships, traineeships, and teaching assistants. We believe,
however, that such revision should not be overwhelmingly difficult,
and that the result would be worth the effort. What seems to be
needed is a larger number of fellowships and traineeships, but with
a provision for limited participation in teaching during the middle
graduate-study years.
*It is not correct to conclude that therefore approximately 30 percent go into
industry or government. Actually, about 15 percent enter industry or government
and the remaining 15 percent are simply lost track of (see reference 16). It is a
fair guess that the majority of these latter come from abroad for graduate study
and return to their home countries after obtaining PhD degrees, usually to enter
academic work there.
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Special Educational Issues

THE COLLEGE TEACHER

Our Panel on Undergraduate Education has given detailed con-
sideration to a number of problems of college teachers of the mathe-
matical sciences: see especially Chapters 4, 5, and 6 of their report.1

Foremost among these problems is the shortage of qualified college
faculty, discussed in Chapter 4 of reference 1 and in Chapter 7 of
this report. The principal way of training new qualified teachers to
meet this shortage is to sustain graduate mathematical education,
especially PhD production, at a vigorous level. Over the five-year
period ending in 1966, PhD production in the mathematical sciences
increased at an average annual rate of approximately 18 percent (see
Table 10, page 139). This table also indicates that an average annual
rate of only approximately 10 percent has been projected for the
succeeding five-year period ending in 1971. It is also anticipated that
it may not be possible to sustain the closely correlated support of
basic research in the core areas at more than this level (see discussion
of The Core on page 197). Much could be done to alleviate the
shortage of qualified college faculty in the mathematical sciences if,
for the five-year period ending in 1971, an annual rate of increase of
PhD production near 18 percent instead of near 10 percent could
be maintained. Also, certain measures could be taken to avoid
wastage of mathematical talent at the graduate level (see the section
on Wasted Mathematical Talent, page 159).

Along with the training of new faculty, however, strong and con-
tinuing efforts are needed to upgrade and update the qualifications

147
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of the present college mathematical faculty. Developments in the
applications of mathematics over the period 1961-1966 show sharply
the changed requirements in faculty competence if students in un-
dergraduate colleges are to be offered relevant mathematical educa-
tion. The mathematical disciplines in which enrollments have grown
most rapidly in this period are linear algebra, probability and statis-
tics, and computer-related mathematics. This situation requires a
substantial retraining program for the college mathematics faculty if
the relevant mathematical education is to become widely available in
a reasonable length of time.

The rapid growth in demand for instruction in the fields of linear
algebra, probability and statistics, and computer-related mathematics
from 1960-1961 to 1965-1966 is indicated in Table 11. The data are
taken from the Lindquist and CBMS surveys.

TABLE 11 Growth in Certain Mathematics-Course Enrollments

FIELD 1960-1961 1965-1966 INCREASE (%)

Linear algebra 4,000 19,000 375
Probability and statistics 23,000 44,000 91
Computer-related mathematics 4,000 20,000 400
Numerical analysis 3,000 5,000 67.
Analytic geometry and calculus 184,000 295,000 60
Precalculus mathematics 430,000 554,000 29
All undergraduate mathematics 746,000 1,068,000 44

During this period, mathematics-course enrollments as a whole
grew at about the same rate as did undergraduate enrollments gen-
erally. College enrollment in precalculus courses grew at a much
lower rate, calculus enrollment grew at a substantially higher rate,
but the enrollments in linear algebra, probability and statistics, and
computer-related mathematics grew at a rate spectacularly greater
than did undergraduate enrollments as a whole.

In many colleges the availability of suitable courses, or even any
courses, in these subjects for undergraduate students is very low,
quite apart from the quality of the instruction. The CBMS survey
indicates that out of the country's four-year colleges and universities
there are perhaps 750 that teach mathematics to a significant number
of students and yet offer no course in linear algebra. As for comput-
ing work, even more colleges offer no course in computer program-
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ming,* while only a negligible fraction offer any computer-related
mathematics beyond elementary programming.

Effective action to meet this situation will have to be on a massive
scale. One retrained faculty member per department will hardly be
sufficient to provide the necessary nucleus if a department is to move
forward to the desired level. Progress toward meeting the needs could
be made with a three-year program in which, by retraining one
faculty member per year, 750 mathematics departments could ac-
quire a faculty member in each of the three areas alluded to whose
retraining at least qualified him to teach strong elementary courses
in this area. A new program of this breadth and magnitude would be
expensiveupwards of $9 million per year, it has been estimated.

Chapter 5 of the report1 of our Panel on Undergraduate Educa-
tion eloquently points out that in the most seriously underdeveloped
colleges the needs for faculty retraining are almost overwhelmingly
severe and will require special measures. A number of concrete sug-
gestions are made. We also commend to the attention of college
administrations, federal agencies, and private foundations the dis-
cussion in that report (Chapters 4, 5, and 6) of other pressing prob-
lems of the college teacher: geographic and intellectual isolation
from the mainstream of mathematical activities, the need for new
curricula and new teaching methods, the multiplicity of demands on
the college teacher's time, and the difficult working conditions and
inadequate facilities with which he often has to cope.

APPLIED MATHEMATICS

The special problems of education in applied mathematics were the
subject of an extensive recent conference sponsored by the Society for
Industrial and Applied Mathematics. The proceedings of this con-
ference have been published in detail,35 and we refer to these pro-
ceedings for a full discussion, from several points of view, of some of
the matters we discuss here.

It has been recognized for many years that applied mathematics
does not attract a sufficient share of talent from the younger genera-
tion. Many more students could enter various fields connected with
* At least not in mathematical-science departments. In some colleges or univer-
sities where no mathematical-science department offers a course in computer pro-
gramming, such a course may be available within a school of engineering or
business or in some other department.
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applications and pursue satisfactory and useful professional careers.
Weyl's 1956 report° states:

The most serious problems besetting the conduct of applied mathematical
training programs at present, are in order of their importance:

(1) the lack of qualified students;
(2) the difficulty of finding applied mathematicians qualified and in-

terested to accept faculty appointments; and
(3) the questions of relative size and administrative relations of faculty

ora0 anizations.

The shortage of top students in applied fields (except in computer
science) is sometimes blamed on the allegedly introspective and
monastic tendencies of modern mathematicians, which are said to
have a pernicious effect on the teaching of mathematics. The follow-
ing statement is from a letter by an applied mathematician:

Many mathematics instructors in colleges and universities proceed as if all
of their students are destined to become mathematicians. They do not con-
vey to the students the scientific origins of mathematical ideas or the
possibilities of applying mathematics to natural and social sciences. They do
not foster the skills necessary for future practitioners of those sciences. In-
stead they inculcate in the students a snobbish conviction that only pure
mathematics is intellectually respectable.

This criticism may be partly justified. On the other hand, another
applied mathematician wrote:

Good students are attracted by great teachers. The trouble with applied
mathematics education in this country is the paucity of applied mathe-
maticians in universities who deserve the admiration of the best students
and who are able to articulate the intellectual excitement of their subject.

At any rate, we consider that the future of applied mathematics,
in the broadest possible sense, depends largely on the educational
efforts made today and in the near future. Two things are needed:
broadening of the education of young scientists and mathematicians
generally and education in applied mathematics as a discipline with
its own objectives, attitudes, and skills. We believe that both efforts
should begin during the undergraduate years.

Concerning the general education, we believe that not enough
is taught to students in their undergraduate work about applications
of mathematics, both in traditional subjects and in the very modern
and new fields. There should be mathematics courses, available to
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all, that stress the heuristic process by which mathematical models
of scientific questions are arrived at and that emphasize strongly the
character of mathematical thought that leads to results from which
one can infer the answers to such scientific questions. This is not the
same detailed material that most efficiently leads young mathematics
students to the frontiers of professional mathematics, and it re-
quires attitudes not necessarily compatible with the attitudes of such
mathematics courses. For some special students, summer sessions
especially devoted to mathematics in the service of science would be
a useful institution. As an example, the presentation of the range of
possibilities inherent in computing machines to both undergraduate
and graduate students would be timely and useful.

Such presentations would require, of course, a reservoir of pro-
fessors. It would be useful to organize the preparation of a sufficient
number of persons who could teach and inspire students in this
direction. It also seems to us desirable to initiate, in a number of
institutions, possibilities of exchange courses and lectures. lArhat we
have in mind are mathematicians teaching courses on some phases
of new mathematical theories in the departments of physics, biology,
or economics, and vice versa. Physicists and others could lecture to
mathematicians on the essence of problems arising in the new de-
velopments in their own fields. In both cases, the lecturers should
present the methods and the problems in the forefront of their
sciences.

As far as the preparation of professional applied mathematicians
is concerned, we note that this task is accomplished in various ways
in various countries. In Great Britain, students enter the university
either as applied mathematicians or as pure mathematicians. In the
Soviet Union and in Germany, specialization takes place later in a
student's career. In this country, no single system has been used, and
many American applied mathematicians were originally trained as
engineers or physicists. This Committee believes that one could not
and should not prescribe a method for educating applied mathe-
maticians to be used in all or most colleges and universities. On the
contrary, widespread experimentation should be encouraged. Never-
theless, we want to recommend for special attention and support a
plan for undergraduate education in applied mathematics which
has recently been evolving at Harvard and MIT. This plan and its
underlying philosophy are described in C. C. Lin's address in the
proceedings" of the Aspen Conference, mentioned above.

Concrete educational needs in physical mathematics and other



152 The Mathematical Sciences in Education

parts of applied mathematics are discussed further in Chapter 14.
We emphasize, however, that unless there is a sizable core of devoted
applied mathematicians who are to be judged both in professional
standing and in university duties as applied mathematicians per se,
and who are supported for their activities in applied mathematics,
efforts to encourage applied mathematics are doomed to failure.
Without a group of devoted, talented, and competent people, most
of the crucial suggestions will not materialize. (We note, with some
apprehension, that most of the specific recommendations we make
concerning applied mathematics already appear in the 1956 survey.9)

COMPUTER SCIENCE

As of the summer of 1967 there were approximately 40,000 auto-
matic computers in the United States, excluding special military
computers. In Parts I and II we have pointed out the penetration of
computing into almost every facet of technical, scholarly, and eco-
nomic activity. If these computers are to serve society as well as they
shouldindeed, if they are even to solve the complex problems so-
ciety already counts on them to solvethere is a vital need for
persons educated at all levels in computer science. The Pierce re-
port3 calls for an extremely large increase in the funds for education
of college and university students in computing and for computing
costs incidental to such education. Such increased activity cannot
occur without a correspondingly large increase in well-educated man-
power devoted to teaching computing in colleges and universities
and leading the development of the subject. The total requirement
for those educated in computer science certainly demands a program
of massive magnitude.

These new computer scientists must be educated in our universi-
ties. The universities have heard the challenge, and departments
of computer science are springing up at an ever-increasing rate.
Already 50-odd departments exist at universities in the United
States and Canada. In a major university not now possessing such a
department there is usually a plan to create one in the near future.
Although each university should certainly organize itself to best
serve its own goals and constituency, it appears to us that the au-
tonomy of a separate department offers one reasonable way to permit
computer science to develop as it must. A position dominated by an-
other science or by a branch of engineering may provide too many
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constraints to the development of the subject and the education of
the new generation.

Once organized, departments of computer science are typically
eno-ao-ed in three kinds of activities:0 0

1. Research in computer science, which may or may not involve
an expensive computer laboratory;

2. Education of three classes of students: (a) future specialists in
computer science at the bachelor's, master's, and/or doctor's level;
(b) university students who need computing as a research tool in
their university or postuniversity careers; (c) general students who
wish to learn about computers as an important part of the world
they live in;

3. Service to the university community. Computer scientists are
typically interested in trying to help others use computing in their
research, both through direct consultation and through leadership
and technical advice to the university computation center.

The supply of leaders in computer science is critically low. One
evidence of this is the difficulty experienced by most departments in
finding suitable faculty. Another is the fact that computer science
has roughly one third of the active professional workers in the
mathematical sciences, yet only one twentieth of the new PhD's, and
an even smaller proportion in earlier years.

What can be done about this? Clearly no ideal solution can be
found for the next few years, but we see a need for a strenuous pro-
gram to improve the quantity and quality of leadership as rapidly
as this can be accomplished. Since it takes good faculty to produce
good graduates, and good graduates to become new faculty, a
classical chickenegg problem must be solved. Since some 50-odd
departments of computer science now exist, the first step would seem
to be to make sure that these departments can attract as many good
faculty members as can be located. With suitably high salaries and
good research environments, many could be found in industry.
Others can be attracted from such other university departments as
mathematics and engineering, though they usually require further
education in computer science.

In the better universities, at least, the new departments of com-
puter science are finding themselves swamped by applications for
admission from excellent students. (At Stanford, for example, it was
possible for 1966-1967 and 1967-1968 to admit only approximately

4
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25 students each year out of over 200 well-qualified applicants; and
even so, in 1966-1967 there were more graduate students in com-
puter science than in mathematics.) Though more reliable data are
needed, it appears that in several of the best departments of com-
puter science, the real limiting factor in the production of PhD's
is not students but buildings, facilities, and faculty.

Educational programs in computer science have been the subject
of several papers published in the Communications of the Associa-
tion for Computing Machinery. See especially references 36 and 37,
which give extensive details of undergraduate and graduate pro-
grams in computer science, respectively. The preliminary curricula
discussed in reference 36 were planned carefully to fit in with those
of the Committee on the Undergraduate Program in Mathematics.
In reference 37 are given syllabi for doctoral examinations in one
university, as well as a general philosophy of education in computer
science.

Forsythe37 explicitly calls attention to the need for a suitable
university computa tion facility for use in connection with educa-
tional programs in computer science. The necessary systems include
flexible, fast-acting compilers and other resident systems of a sort
rarely furnished by the manufacturers of hardware. Another need
is a sufficient budget for the computer time used in education; satis-
factory methods of government support have not yet been worked
out. Often, government accounting procedures prevent students
from using university computers that are standing idle. Solving these
accounting problems is important, but not easy, since they are asso-
ciated with nationwide accounting policies. E. A. Feigenbaum and
Courtney S. Jones have outlined the problem (see Appendix D).
The problem and some proposals for its solution are also discussed
in reference 38 from a different point of view.

In these early years of computer science, teaching even an ele-
mentary course is likely to be a research experience for the instructor.
This implies that formal teaching loads must be lighter in computer
science than in better established disciplines. This indicates needs
during these formative years for (a) special support for developing
and updating courses in computer science, (b) support, from all
sources of funds, for faculty research during the academic year, and
(c) even more faculty additions than would otherwise be needed.
Moreover, since much computer-science research is validated by the
successful operation of computer programs rather than by the suc-
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cessful proof of theorems, special attention has to be given to the
form and character of assessment of research quality.

Because of the need to furnish computer-science students with
some computing time for their work, an additional budget is needed.
We make the rough estimate that graduate students in computer
science each need $1,000 per year of computing time.

The most critical shortage in the computer world is for well-
educated systems programmers and persons who can teach systems
programming. (For example, to provide the large amount of student
computing service implied by recommendations of the Pierce re-
port,3 without intolerable costs, will require the resourcefulness of
many more systems programmers than are now available.) An essen-
tial ingredient of education in systems programming is the oppor-
tunity to experiment with the control programs of a modern
computer. Such experiments cannot be tolerated on a computing
machine dedicated to continuous reliable campus-wide service, be-
cause of the probability of interrupting the service. Hence, in addi-
tion to the $1,000 of computing time estimated above, advanced
students specializing in systems programming will require access to
a substantial computer separate from the central campus computer
utility, so that systems experiments can be safely encouraged. If the
experimental machine can be shared with other research projects,
we estimate that the additional costs of systems experimenting may
approximate $5,000 per year for the advanced student of systems pro-
gramming. For comparison, we note that it is not uncommon for a
student of systems programming to use $15,000 worth of computing
time for thesis research.

One very important problem in computer-science education is
the appropriate organization of a university in regard to computing.
Because computing is such a new field, one typically finds computing
groups arising in several parts of a campusfor example, in elec-
trical engineering, in the graduate school of business, in experi-
mental physics, in the medical school, in industrial engineering, in
operations research, in the school of arts and science. Furthermore,
a university may have several computation facilities. Such dispersion
of effort, unless most carefully coordinated, tends to produce in-
compatible computer systems, duplicated faculties, and other prob-
lems. Some unpleasant campus controversies have already arisen
over competition for the major role in computer-science education.
We can only suggest that university administrations save money and
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manpower by strong coordination of efforts. The relation of the
computer-science department to the university computation facility
is especially important. We believe they should be sufficiently closely
related to exert desirable influences on each other, and yet their
distinct functions of research and education on the one hand, and
university service on the other, require clearly separated adminis-
trative settings.

In today's tight fiscal situation it is extremely hard to add a
burgeoning new field to an already overcrowded and overcommitted
university. The new departments of computer science are typically
suffering from shortages in space, in faculty, in research funds, in
budget, in computer resources, andin some casesin research
assistantships and traineeships. The problems seem to require mas-
sive infusions of new money.

STATISTICS

As has been the case for 20 years,39 there is a wide demand for ade-
quately trained statisticians. The diversity of the needs and of the
kinds of statisticians who can help to meet them is briefly considered
in the further discussion of Statistics on page 203. Most needed are
statisticians who are motivated by mathematics, on the one hand,
and by the challenge of dealing with uncertainty or revealing what
their data are trying to say, on the other.

Unfortunately, the number of PhD's being completed in mathe-
matical statistics in the United States today is relatively small
fewer than 10 percent of the roughly 800 PhD's per year being pro-
duced in the mathematical sciences generally, according to estimates
by our Panel on Graduate Education. This is not because of too few
graduate training opportunities: the country has about 70 universi-
ties that offer PhD degrees in statistics, and even those with quite
strong programs are not getting many able students. Attracting more
first-rate men to do PhD-level work in the field is a genuine problem.

The major difficulty lies at the undergraduate level. In statistics,
as in all the mathematical sciences, preparation for research and
professional activity is naturally well under way before a student
completes his undergraduate years. Fewer than one half of the uni-
versities with PhD programs in statistics also offer undergraduate
statistics majors. Almost no other institutions offer either such
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majors or majors combining statistics and mathematics. Only a
small fraction of U.S. undergraduates have appreciable access to
statistics as a subject. It is true that undergraduate preparation for
majors in mathematics, with its traditional emphasis on core mathe-
matics, provides an excellent foundation of knowledge for potential
graduate students in statistics. It does not, however, provide nearly
enough students with either motivation to study statistics or an un-
derstanding of the extramathematical aspects of statistics.

All those things that can be done at the undergraduate level to
expose more students to a proper understanding of statistics and its
role are urgently needed. Including mathematical statistics in a
conventional mathematics major can help; the students will at least
learn that there is such a subject as statistics, but they are unlikely
to gain any feeling for its nonmathematical aspects. Introducing
mathematics students to statistics, taught so as to communicate its
extramathematical aspects, while using mathematics freely where
appropriate, can help much more.

Even this does not meet the needs of the many students who might
find research in statistics attractive but who happen to be repelled by
the attitudes conveyed in courses of a conventional mathematics
major. Majors in many fields, particularly scientific ones, have pro-
vided pathways to statistics for outstanding individuals. We cannot,
however, expect these routes to meet the need. If an open road to
graduate study in statistics is to be provided, the minimum is a joint
program in mathematics and statistics, in which statisticians who
have or can adopt an extramathematical attitude have a substantial
share in setting tone and attitudes. 'Where faculty skills and atti-
tudes permit and appropriate courses can be given, an undergradu-
ate major in statistics offers greater possibilities.

The whole problem of undergraduate routes to graduate school is
vital for statistics. Those departments now giving the PhD degree
are already diverse in attitudes and course content, and will become
increasingly so as they strive to meet the needs of an ever more
heterogeneous student clientele.

Both to attract good students and to give the training they need,
courses in statistics must gain excitement and realism by avoiding
the impressions (all too frequent in today's courses) that: (a) the
model is already available; (b) the data and the problem are small-
scale and easily treated by a standard approach; (c) anything large
and complex would be beyond the reach of these methods and there-
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fore outside of statistics; (d) data are nice and clean; (e) all statis-
tics is mathematics; (f) all statistics is based on probability (whereas
much has nothine to do with it) .

If this is to happen on a nationwide scale, as it should, both teach-
ers and students will require access to new material, providing un-
derstandable accounts of enough different instances of: (a) model
building; (b) large-scale investigations involving both large-scale
data processing and statistical thinking; (c) "dirty" investigations
skillfully handled; (d) material on the nonmathematical, nonprob-
ability parts of statistics. As such material becomes available, there
will be need for a substantial effort to make its effective use possible
in many more institutions than now provide their undergraduates
with effective access to statistics.

RESEARCH VERSUS TEACHING

During recent years, it has become fashionable to complain that
government sponsorship of scientific research has led to poorer teach-
ing, especially on the college level, because of separation of leading
scientists from contact with undergraduates. On the other hand,
many professionals believe that the teaching of the mathematical
sciences in American colleges and universities is better today than it
was, say, 30 years ago. In particular, the reduction in formal teach-
ing hours that has taken place during that period has often resulted
in replacing routine teaching of traditional courses by more am-
bitious, modern, and creative pedagogical efforts.

While it is difficult to obtain objective evidence of this, we have
made an effort to ascertain whether and to what degree the leading
research mathematicians are, in fact, removed from teaching in gen-
eral and from undergraduate teaching in particular. At the Com-
mittee's request, the American Mathematical Society has identified
about 300 distinguished American mathematicians to whom a short
questionnaire concerning their teaching duties was sent. The list
includes those mathematicians who have delivered invited addresses
at AMS meetings or at International Congresses of Mathematicians
since World War II, members of the National Academy of Sciences,
and recipients of NSF Senior Postdoctoral Fellowships, Sloan Feilow-
ships, Guggenheim Fellowships, and various other prizes.

It was found that, on the average, during the three academic
years 1962-1965 all but eight of the 283 respondents taught at least
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three hours a week, with the typical teaching load being six hours;
and all but 30 of the 283 taught some classes for or open to under-
graduates. In assessing these figures, which we believe compare
favorably with those in other sciences, one should remember that

a research mathematician usually does more teaching in seminars

and personal consultations with students than during formal instruc-
tion hours. Thus, there is considerably more teaching by such
scientists than is indicated by numbers of classroom teaching hours.

WASTED MATHEMATICAL TALENT

We believe that a large number of mathematically gifted young

men and women with potential to become productive mathemati-

cal scientists and college mathematics teachers fail to do so for

socially determined reasons. Waste of mathematical talent occurs

at two points in particular, and we feel that preventive action can be

taken. The problems touched on here are clearly not peculiar to
the mathematical sciences.

As noted in Chapter 7, over 70 percent of liberal arts colleges
have, at most, one staff member who is a PhD in a mathematical
science, and approximately 40 percent have none at all. In such
institutions, talented students will in general not receive proper
guidance and will almost certainly not receive undergraduate edu-
cation sufficient for successful graduate careers. The situation is
aggravated by the fact that in many cases students attending such
institutions come from economically and culturally deprived regions

and population strata.
A fuller discussion of this problem is given in Chapter 5 of the

reportl of our Panel on Undergraduate Education. This Panel has
proposed various measures to improve the situation. If these
measures are undertaken and are successful, they will contribute
toward relieving the shortage of mathematical scientists and college

teachers and will also contribute in a modest way toward the solu-
tion of an acute social problem. We endorse the recommendations
of our Panel and have singled out one (Recommendation 15, page

27) that could be implemented immediately. It aims to provide a
"fifth undergraduate year," which would enable exceptionally
talented students with weak preparation to begin graduate work at

more competitive levels of preparedness.
Our Panel on Undergraduate Education has also pointed out, in
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Chapter 5 of their report,l that at present our society is not utilizing
fully the intellectual capacity of women. Social attitudes, family
responsibilities, and out-dated nepotism rules prevent many talented
young women from beginning or continuing graduate study and
from continuing professional work after having received a PhD
degree. A modest recommendation to help alleviate the situation
has been given in Recommendation 13 (page 26).



IV
Level and Forms of Support



This part of our report is devoted to description of the sources,
levels, and forms of support of research and higher education in
the mathematical sciences by the federal government and by private
foundations. There will be some discussion of industrial laboratories,
but no attempt will be made to assess quantitatively the contribu-
tions by industry or by the universities.

The overwhelming portion of the support considered here has
its source in the federal government. The objectives of this support
range widely from the immediate results sought by the supporting
agency to the maintenance of lines of communication with leading
mathematicians, so that potential applications of mathematics to
agency problems will continue to be identified and exploited as
early as possible. Although the National Science Foundation is not
ordinarily thought of as a mission-oriented agency, its direct mission
of supporting the advance of the main lines of scientific research as
developed within the mathematical sciences is actually the most
vital science mission of all.

Appropriate forms of support must accomodate themselves to a
variety of objectives, to the varying relations between supp3v and
demand of research manpower, and to the size and structure of the
science activities in educational institutions.
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Federal Support of Research

The general history of federal support of scientific research has
already been clearly traced in an earlier report of the National
Academy of Sciences.41 For the mathematical sciences, the period
since World War II is of special importance. During this postwar
period, federal support of mathematical research and graduate edu-
cation has grown significantly, stimulating and keeping pace with
the general growth in American mathematical activity; and during
this period the United States has moved into a position of world
leadership in mathematical research (see Chapter 1).

LEVEL AND SOURCES OF SUPPORT

The principal government-wide analysis of federal research obli-
gations is contained in the National Science Foundation series,
Federal Funds for Research, Development, and Other Scientific
Activities.2 The figures below were obtained from Volumes IVXV
of this series. As Table 12 shows, eight agencies are currently the key
federal contributors to support of research, both basic and applied,
in the mathematical sciences.

At this point we make a distinction between basic and applied
research. For the mathematical sciences, this is not at all the dis-
tinction between core mathematics and applied mathematical sci-
ences. Research is basic or applied according to whether it is inner-
directed or mission-oriented. Although he does not use the term
"inner directed," Brooks has given a clear discussion of this idea in a
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TABLE 12 Federal Obligations for Research in the Mathematical
Sciences

M1LLIMS OF DOLLARS

AGENCY 1960 1962 1964 1966

National Science Foundation 3.3 7.4 11.4 14.9
Army 9.7 5.5 8.3 8.6
Navy 6.9 16.3 96.9 26.5
Air Force 5.0 10.4 20.4 332
DOD-Wide Agencies - 6.4 14.4 19.2
Atomic Energy Commission 3.9 4.1 5.1 6.5

National Aeronautics and Space Administration 1.0 17.9 6.3 7.6
National Institutes of Health 0.1 0.1 9.6 4.3
All Others 0.9 1.6 3.3 4.1

1 OM LS

-
23.6 69.0

-
9S.0 124.9

recent article in Science.40 Rcsearch is basic, or inner-directed, when
the choices made by the researcher in the course of the research are
"influenced almost entirely by the conceptual structure of the sub-
ject rather than by the ultimate utility of the results." As Brooks goes
on to point out, it is perfectly consistent with this conception for the
subject of a basic research to have utility and for the research to be
funded with this in mind. Thus inner-directed research includes
work in both core mathematics and applied mathematics. Examples
of basic research in applied mathematics are studies in the mathe-
matical theory of linguistics, dynamical systems and their astro-
nomical applications, and the theory of rotating fluids for the under-
standing of geophysical phenomena.

The amounts shown in Table 12 are for the support of both
basic and applied research. The over-all figures in reference 2 indi-
cate that for 1966 the $125 million in federal obligations for mathe-
matical-sciences research was almost equally split between basic and
applied research; about $62.5 million went to basic research. Accord-
ing to a study made by F. J. Weyl for our Panel on Level and Forms
of Support, however, certain of these figures are of uncertain re-
liability, so that a conservative total of $46.5 million for basic-
research support in 1966 seems closer to the facts. A complete tabu-
lation of the amounts obligated by various federal agencies for sup-
port of basic research in the mathematical sciences is shown in
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Table 13 along with the basic-research percentage of total research
obligations.

Table 13, especially the percentage comparison with Table 12,
demonstrates the striking growth of the applied-research effort in
the mathematical sciences, based on the use that can now be made
of mathematical modes of analysis together with modern computing
equipment. When it comes to interpreting the dollar amounts in
Table 13, it must be kept in mind that they neither coincide with
nor entirely include the totals allocated for mathematical research
to universities. In the budgets of the military services, about 85
percent of the amount allocated to basic mathematical research is
spent in universities. In the case of the other five key agencies, less
is known about any further breakdown of the reported figures.

Returning to Table 12, it had been our hope to extract in the
first instance all "large" projects, say $500,000 or more in fiscal
year 1966, and to specifically identify them, especially those which,
although of predominantly mathematical nature, serve primarily
research objectives in other disciplines. Next, we had hoped to break
out of the residue the amounts allocated to in-house mathematical
activity. It would have been our aim, finally, to show how the re-

TABLE 13 Basic-Research Amounts and Percentagesa

AGENCY

1960 1962 1964 1966

AMT. % A Nrr. % A MT. % A NIT. %

NSF 3.8 100 7.4 100 11.4 100 14.9 100
Army 9.0 81 9.6 47 2.9 35 2.4 28
Navy 4.8 70 4.6 98 6.7 26 5.9 22
Air Force 9.0 40 3.0 29 5.4 26 6.2 19
DOD Agencies - - - 0 [14.1] [98] [16.0] [83]
AEC 2.8 88 3.9 95 4.9 96 6.3 97
NASA 1.0 100 [0.7] [4] 5.4 86 7.0 92
NIH 0.1 100 0.1 100 0.8 31 9.2 51
All Others 0.3 33 0.4 25 1.2 36 1.6 40

TOTALS 17.0 72 22.0 32 38.7 40 46.5 37
[22.7] [33] [52.8] [54] [62.5] [50]

a Figures in square brackets are of uncertain reliability and therefore omitted from the
unbracketed totals. The minimum in percentage of basic research shown as occurring in
1962 may be due to some artifact of the data, such as reclassification.
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mainder is divided among the five major categories: core mathe-
matics, physical mathematics, mathematical statistics, computer
science, and the pioneering of mathematical methods in new areas,
especially the biological and behavioral sciences. This has turned
out to be impossible. In no agency does there exist a central focus
for maintaining an overview regarding its entire commitment to
mathematical-sciences research.

The study made for our Panel on Level and Forms of Support
estimates that in fiscal year 1964 approximately $45 million were
allocated by the federal government to mathematical-sciences re-
search at universities, $16 million going to contract research centers
and $29 million for academic research. The $16 million involves
such organizations as Argonne National Laboratory, Lincoln Lab-
oratory, Lawrence Radiation Laboratory, and Los Alamos Scientific
Laboratory. The $29 million certainly includes almost the entire
$11.4 million of the National Science Foundation. Adding also the
approximately 85 percent of the $15.1 million in the Army, Navy,
and Air Force budgets for basic mathematical-sciences research
($12.4 million), there is a remainder of $5 million, which must have
been contributed by the AEC (perhaps about $3 million), NASA, and
NIH (approximately $1 million each). Comparable amounts in fiscal
year 1966 might be roughly estimated as not less than 10 percent and
not more than 15 percent higher, suggesting a total current allo-
cation to academic research in the mathematical sciences in the
neighborhood of $35 million. A slightly higher growth rate
approximately 18 percenthas held in recent years for PhD produc-
tion (see The Doctorate in the Mathematical Sciences, page 138) and
for the closely correlated support of core research areas (see The
Core, page 197).

Undoubtedly, substantial apportionments for research in the
mathematical sciences are made by the key agencies, other than the
AEC and the NSF (which have no in-house laboratories), to intra-
mural research activities. In the Army alone, this accounts for
about $5 million of its total $8.6 million spent for mathematical-
sciences research in fiscal year 1966. Of this amount only $1 million
is under the central management of the headquarters staff of the
Army Research Office in the Office of the Director of Research and
Development. A comparable amount is probably distributed in the
laboratories of the Navy, and somewhat less in the Air Force. Once
the contributions of NIH and NASA have been added to these items
and combined with the mathematical research funds obligated by
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the remaining agencies, something like a total of $15 million may
be accounted for.

THE ROLE OF THE MISSION-ORIENTED AGENCIES

The mission-oriented agencies concerned with the mathematical
sciences are the agencies listed in Table 12, excluding the National
Science Foundation. In this connection, two points need emphasis.
First, although it is not oidinarily classed as a mission-oriented
agency, the National Science Foundation itself has a very definite
mission in the promotion and support of basic research and edu-
cation in the sciences (see reference 41, page 46). Second, though
they are not as yet extensively concerned with the mathematical
sciences, mission-oriented agencies other than those listed in Table
12 will likely become so in the near future. This applies especially
to agencies whose missions lie in urban development, environmental
control, transportation, education, and related concerns.

A great deal of credit for the rise of the United States, during
the 1950's, to a position of world pre-erninence in mathematical
research is due to the vision and policies of mission-oriented agencies
within the federal government, and above all those of the Depart-
ment of Defense. In fact, in the critical period immediately follow-
ing World War II it was a newly formed mission-oriented agency
the Office of Naval Researchthat pioneered in developing con-
tract machinery appropriate for federal support of scientific re-
search in universities. This, together with the grant mechanisms
being evolved at about the same time by the National Institutes of
Health, has led to the extremely fruitful project-grant mode of
federal research support (see reference 41, Chapter III). From the
outset, ONR had a clear conception of the value of supporting basic
research ("free rather than directed") and "maintaining contact
with the most imaginative people in science" (reference 41, page
37).

A missio i-oriented agency supporting research in the mathe-
matical sciences as part of its research and development program
will do so for the sake of the following major objectives:

1. The development and use of mathematical techniques, as
well as the training of mathematical scientists in the fields, at the
level, and in the numbers that its mission requires
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Decisions of sponsorship therefore reflect an interest in particular
subject-matter fields. Of course, such expectations of mission-related
usefulness cannot be put on a project-by-project basis but are
attached to a coherent program effort over a reasonable time. Thus,
$300,000 knowledgeably invested for five to seven years in research
on nonlinear ordinary differential equations will make a difference
in the designing of guidance and control servos of more versatile
performance. How much difference it will make, how much more
difference might be made by each additional $100,000 so invested,
or whether the entire amount would do better in some other area
depends on such factors as the field, the people, and the problems.
To raise and, no matter how imperfectly, to answer such questions
is properly the concern of the research administrator.

2. Marshaling, when and as needed, the contributions that can
be made to its mission by the sum total of the mathematical sciences,
both as a body of accumulated knowledge and as a community of
concerned and experienced scholars

Assuring the sponsor of prompt alerting and cogent advice on
matters of importance to his affairs has long been recognized as an
important part of research support, especially in the mathematical
sciences, where the areas to be covered are generally extensive, while
the manpower that can be allocated in-house is limited.

3. The contributions that the agency can make by opening up
the most challenging problems that it faces for work by the research
community

Manifold patterns of communication are being utilized for bring-
ing the open scientific problems of research-sponsoring agencies
before the mathematical-sciences community. Joint meetings, prob-
lem workshops, and special program activities aimed at "coupling"
are all being tried, in part to get the word out and in part to
create opportunities for outstanding mathematicians to influence,
when and as they may choose, the extension of mathematical modes
of thinking in areas of science and technology currently of national
concern.

We note that support of basic research by agencies with specific
applied missions results in multiple sources of support, a condition

_
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that has proved beneficial for the advance of all sciences and in
particular for the mathematical ones.

It is not always realized how large a fraction of federal support
of the mathematical sciences in recent years has come from the

mission-oriented agencies. Table 13 shows that during the period
1960 to 1966 approximately 70 percent of the federal support of

basic mathematical research has been contributed by the mission-
oriented agencies, that is, by the listed agencies other than the

National Science Foundation. The amounts and percentages for

specific years are given in Table 14.

TABLE 14 Amount and Percentage of Federal Support of Basic

Mathematical Research Contributed by Mission-Oriented Agencies

1960 1962 1964 1966

Amount ($ millions) 13.2 14.6 27.3 31.6

Percentage 78 66 71 68

The mission-oriented agencies have always had a mandate (clari-

fied in the President's Executive Order 10521 of March 17, 1954, as
noted in reference 41, page 49) to engage in support of basic mathe-

matical research in areas closely related to their missions; and, in
deed, Table 14 indicates that this support has grown at an average
annual rate of approximately 15 percent during the period 1960
1966. During the same period, however, a computation using figures

from Tables 12 and 13 shows that support of applied mathematical

research by the mission-oriented agencies has grown at an average

annual rate of over 50 percent. Undoubtedly, work involving expen-

sive computer systems accounts for a large fraction of this phe-

nomenal growth, but this is still impressive documentation of the

rapidly increasing use of the mathematical sciences by these mis-

sion-oriented agencies.
Provided it is understood that basic research in the mathematical

sciences includes basic research in computer science, which involves

expensive equipment, we feel that it makes sense to recommend

that future support of such basic research by the mission-oriented

agencies grow in proportion to these agencies' utilization of the

knowledge and techniques of the mathematical sciences. We also

find it appropriate that these agencies, who are themselves con-

sumers of mathematically trained personnel and who benefit from
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the high level of science and technology that depends on advanced
mathematical training, should continue to participate in the sup-
port of this training. Furthermore, we believe that these agencies
can continue to find value in contact with first-rate academic
mathematical scientists, and that, conversely, these scientists can
receive valuable intellectual stimulus as well as financial support
from mission-oriented agencies. In particular, the mission-oriented
agencies would profit from supporting more postdoctoral research
associates. Some further observations and recommendations in this
general direction are made in the discussion of support by industrial
and government laboratories in Chapter 13. Finally, we emphasize
once more that in the future comparable recommendations may be
expected to apply not only to the mission-oriented agencies of
Table 12 but also to federal agencies concerned with such matters
as urban development, education, environmental pollution, and
natural resources.

FORMS OF SUPPORT

This Committee is aware that authoritative voices have proposed
very radical changes in the whole federal system for supporting
academic research and university education, abandoning the present
forms of support in favor of direct federal subsidies to universities.
COSRIMS felt that a discussion of this problem lay outside its com-
petence. The fact that we do not mention this possibility in our
report should not be taken as evidence that we either oppose or
support it.

It is self-evident that any thorough discussion of such a radical
change of the present system would have to take account of the
problems of the mathematical sciences.

Currently federal support of basic mathematical-science research
in institutions of higher learning, estimated above at about $35
million in fiscal 1966, assumes a variety of forms. The principal
forms have been individual or group projects, conferences, depart-
mental or block grants, and institutional grants (especially the NSF
Science Development Program).

The Project System
Project support has been by far the largest single item, and the
one that we consider to be most important, for research advance.
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According to estimates computed for us by the cEms Survey Com-
mittee directly from the grant lists of funding agencies, project sup-
port of basic mathematical research in universities accounted for
something over $20 million in fiscal year 1966. This was primarily
for "inner-directed" projects involving only occasional, and usually
very minor, allowances for computers and other equipment.

Responses to the CBMS Graduate Questionnaire (reference 16,
Volume II) indicate that grants of this sort provided support for the
summer research activities of over 900 senior investigators (associate
and full professors) and over 500 younger ones (assistant professors,
instructors, and research associates), as well as academic-year sup-
port (usually only partial) for about 240 senior investigators and
over 100 junior ones. In addition, they provided stipends for
approximately 750 graduate research assistants, proportionately
more of the graduate students in applied mathematics, computer
science, and statistics being supported in this way. (Proportionately
more in core mathematics are supported as teaching assistants.)
Also included were small but important allowances for travel and
for publication costs incidental to the projects supported.

The project system of research support is thoroughly discussed
and evaluated in a 1964 report by the Committee on Science and
Public Policy of the National Academy of Sciences (reference 41,
Chapter VII) . That report recommends (page 77) that

for the foreseeable future, the major emphasis in the federal government's
support of basic research in science in institutions of higher learning should
continue to be given to the project system.

We strongly endorse this recommendation. Mathematical research
of high quality has resulted from the project system, especially
through its use of panels of peers in assessing mathematical scien-
tists and their research. This system has also stimulated the greatest
expansion of graduate mathematical education at those institutions
best qualified to give it.

A point that deserves emphasis is the relative inexpensiveness of
"project support per tenure research grantee" for the mathematical
sciences as compared with the physical sciences. The primary reason
for this is, of course, easily understood: project grants in the mathe-
matical sciences, even as recently as 1966, involved little in the way
of computer or other equipment costs, whereas equipment costs for
the physical sciences in the recent years have ranged from relatively
modest, as in the case of chemistry and solid-state physics, to ex-

-E
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tremely high, as in the case of elementary-particle physics and as-
tronomy. If for the mathematical sciences in 1966 we take the total
of project support, slightly over $20 million, and divide this by the
number of tenure researchers on project grants, approximately 920,
we obtain a little over $22,000 as the project support per tenure re-
search investigator (TR* (It must be understood, of course, that
only a fraction of this amount actually pays for the services of the
TRI himselftypically approximately $5,000, primarily for support
of summer research activities. The rest goes for such things as sup-
port of junior researchers, research associates, and research assist-
ants; for travel and publication costs; for clerical materials and
services; and above allactuallyfor indirect costs or overhead.)

For comparison, Physics: Survey and Outlook,42 pages 103 and
108, concludes that for physics in 1963 "annual research support
per active faculty investigator" could be conservatively estimated at
$60,000 and conservatively projected to 1966 at approximately
$67,000. Actually, the discrepancy between the physics and mathe-
matical-sciences figures may be much greater than this comparison
of $67,00S with $22,000 suggests, since "active faculty investigators"
in the physics computation appears to have included junior as well
as senior researchers, and perhaps even those not on grants at all.

We checked the above mathematical-sciences figure of $22,000 on
a university-by-university basis for some 15 universities. While there
was a fair spread in the results, the average was very close to this
$22,000 figure, and the spread was considerably less than when both
junior researchers and tenure researchers were taken into account.
We therefore suggest that "project support per tenure research
investigator" is a reasonably stable figure to use in projecting grant
support on a demouaphic basis. For the future, however, direct costs
for equipment (primarily computer costs) promise to be distinctly
higher in mathematical-science research. At the same time, indirect
costs for salaries and stipends promise to be higher too, as will be
costs for research assistants, if the recommendations below concern-
ing numbers of research assistants are followed. As a result, we be-
lieve that for the future the $22,000 average figure will prove to be
unrealistically low and that a figure approaching $30,00 will more
nearly answer to the increased needs.*

We recognize that there have been objectionable features in the

*For computer science itself, the corresponding average cost is estimated to be
near $60,000 per TRI per year (see Computer Science, page 205).

1
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operation of the project system. Its advisory panels have not always
been sufficiently responsive to the newer areas of research, and the
system has sometimes failed to meet effectively the needs of young
investigators at less-distinguished universities and at liberal arts col-
leges. To help offset these disadvantages we suggest that evaluating
panels should include representatives of new areas of mathematical
research (in both core mathematics and applied fields), that younger
investigators not at leading universities should be included in the
projects of senior people at such universities, and that the projects
should provide for travel funds adequate to maintain contact be-
tween the senior mathematicians and such younger men. We also
have some specific new proposals to make regarding the support of
young investigators (see the discussion of postdoctoral teaching fel-
lowships in the section on Postdoctoral Research Education, page
182).

Overhead, a sizable item in project budgets, amounted in fiscal
1966 to perhaps 30 percent of gross direct costs. Recent changes in
accounting procedures have, however, already begun to increase this
proportion and appear certain to increase it to over 40 percent
within the next few years. Actually, the effect of new cost-sharing
requirements has been a shift in the allocation of the overhead
burden from the experimental to the theoretical sciences, where the
primary budgetary items are salaries. Unless compensating upward
adjustments are made in the total funds available to these theoretical
fields, the effect will be an increasingly serious net loss to research
support. This effect is already beginning to be felt in the mathe-
matical sciences.

Departmental Grants
Here we shall consider department-level grants, conceived of as a
more or less indefinitely renewable mode of sustaining research ac-
tivities within a department. (In the succeeding subsection we shall
consider developmental grants, including grant, at the department
level, intended to initiate a development but not to sustain it in-
definitely.)

There are advantages of simplicity and flexibility in department-
level grants generally, as a supplement or partial alternative to
project grants. While agreeing that departmental grants can be given
only after a department has attained a minimal level of excellence,
we recognize that such grants may be particularly appropriate for
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small departments, provided there is substantial agreement among
the department faculty that this type of support is desirable, and
we recommend that this type of grant be tried on an experimental
basis. In order to have the desired flexibility, these departmental
grants should approximate as closely as possible, in character, the
relatively unrestricted grants-in-aid that have been made by private
foundations. Such grants should run for about three years and
should include some support of younger mathematicians, travel,
graduate research assistants, and publication costs. The same prin-
ciple of departmental grants should apply to developing and sus-
taining the efforts of strong or excellent departments if they wish
to extend their activities to include new areas of research. For ex-
ample, if a department of mathematics is already excellent in pure
mathematics and in applied mathematics in the physical sciences, a
grant in applied mathematics for the social sciences might be made
available.

Developmental Block and Area Grants
Over rccent years, various types of developmental block and area
grants have been made. The most important federal program in
this direction has been the National Science Foundation Science
Development Program. Announced in the spring of 1964, this pro-
gram had made 17 awards to universities by the end of fiscal 1966.
Of these, 10 involved the mathematical sciences directly though not
in uniform ways or to a uniform extent. Individual grants, made for
three-year periods, tended to average fairly close to $4 million, but
the mathematical-science percentages of these grants varied all the
way from 4.3 percent to 31 percent. In total, the mathematical-
science parts of these 10 grants amounted to some $4.7 million, the
major portion of it awarded within fiscal 1966. In the fall of 1966,
the Science Development Program was broadened to include, in
addition to the original University Science Development Program,
a Departmental Science Development Program at the graduate level
and a College Science Improvement Program for primarily under-
graduate insti tu tions.

Our Panel on New Centers has made a special study and evalu-
ation of the NSF university development grants affecting the mathe-
matical sciences. Queries by the Panel to recipient institutions con-
firm that the major use to which the mathematical portions of these
grants have been put, or are planned to be put, is the procurement
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of high-quality research faculty. Other uses of the grants include
library improvement, computer installations, fellowships, salary
increases, and the provision or improvement of administrative and
clerical services.

Among recipients of the university development grants there are
institutions in which a serious effort in coordinating the develop-
ment of the mathematical sciences with that of other scientific dis-
ciplines has been successfully fostered by the grant. Indeed, we feel
that such mathematical sciences as computer science and statistics
are by their very nature especially well adapted to interdisciplinary
grants. On the other hand, in the cases of two institutions, the
awarding of strongly interdisciplinary grants led to considerable
friction between the mathematics department and the other depart-
ments involved, and the outcome was on the whole detrimental to
the development of mathematics in these institutions. For this
reason especially, we welcome the broadening of the NSF Science
Development Program to include a departmental program and feel
that the added flexibility thus introduced will prove particularly
valuable to departments of mathematics.

Concurring with our Panel on New Centers, we do not wish to
take a stand relative to geographical considerations in the estab-
lishment or development of new centers. We feel that geographical
considerations transcend the mathematical sciences as such and are
concerned with more general questions of policy that will not be
resolved by any simple formula. We do, however, wish to identify
and comment on three types of possibilities relating to geographical
considerations.

One of these possibilities is the development of new centers in
close proximity to existing major centers. Assuming the proper
departmental and administrative conditions for the development
of an important new center, a university near one or more existing
major centers should find the recruitment of the proper type of new
faculty relatively easy. This is particularly true of junior faculty
members who want to be in frequent contact with important con-
tributors to research and who want to be able to attend seminars
and colloquia at the nearby major centers. The payoff in positive
influence in the geographical area of the new center is correspond-
ingly less, however, since the area already has top-level mathematical
activity.

Second, there is the possibility of developing new centers in large
metropolitan areas without existing major centers. It seems self-

i
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evident that the longer-range scientific effort of the country will be
enhanced by the deliberate development of important scientific and
mathematical centers in those larger metropolitan areas that have
not developed their own major educational centers. Here, assum-ing the proper departmental and administrative conditions, itshould be possible in a somewhat longer period of time to develop
important new mathematical centers that, in turn, should tend toimprove the education and scientific activity in the given metro-
politan area. The payoff should be greater but the task harder than
in areas close to existing centers.

A third possibility is the creation of new centers in educationally
underdeveloped larger gc: graphical areas. The problem of creating
major new centers in such areas is greatly complicated by the gen-
eral educational level and the apparent relative unattractiveness ofsuch areas for top-level younger mathematicians. Such consider-ations extend not only to schools for the children of mathematicians
but to the university and graduate-level recruitment of talented
students. Whereas the difficulties of major improvement are the
greatest, the payoff for success is the greatest in important sideeffects on the whole educational process in a large area. It seems
likely that support for the development of several nearby centersin a given geographical area may be an effective way to accelerate
the desired growth process and make recruiting of talented younger
mathematicians easier. Advantage should be taken of improved
socio-economic conditions when these are present.

The NSF Science Development Program has sometimes been de-
scribed as aimed at creating "new centers of excellence." As far as
departments of mathematics are concerned, this program has in
practice aimed mainly at raising them to the "strong" level, ratherthan the "distinguished" one, in the rating of Cartter's study,32
page 66. The nine departments classified by Cartter as distinguished
are responsible for the education of a disproportionately large num-ber of American research mathematicians (see Appendix E, Table
E-3), and it is certainly in the national interest to increase the num-ber of such departments. We caution, however, against the idea that
money in itself is sufficient to create such new centers of excellence.
There are two striking examples of universally recognized, excellent
departments of mathematics that could not have been crcated except
for massive infusion of federal funds. These are the Mathematics
Department at Stanford University and the Courant Institute atNew York University. In both cases, however, there were unusual
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circumstances; a strong nucleus of first-rate mathematicians was
already attached to these institutions at the very beginning of their
activities. It does not seem likely that similar opportunities, which
in these instances resulted from political conditions in Europe in
the 1930's, will be repeated in the near future.

TIME AND EFFORT REPORTING*

Prominent members of the mathematics community have expressed
strong concern to us and to the Division of Mathematical Sciences

of the National Research Council about the unreasonableness and
the dangers of recent requirements of faculty "time and effort re-
poning" in connection with university cost-sharing on project
grants. We realize that this is a matter affecting the entire scientific

community and not just mathematicians; however, research in the
mathematical sciences differs, in its independence of place and tools,

from research in other sciences. We feel that a statement from us
may be useful both to federal agencies and to university administra-

tions.
If a university is to share salary costs as its required contriLution

to a project, it certainly has an obligation to provide evidence that

it has actually contributed its share. It must, however, take care

that it does this in a way that does not corrode the traditional re-
lationship between the professor and the university.

Mathematical research (in common with research in such fields

as theoretical physics) is not tied to a laboratory, a library, or an

office. A mathematical scientist, once immersed in a problem, finds

himself thinking about it at all sorts of odd moments; the duration

and intensity of his research work cannot be measured quantita-

tively. Neither he nor, indeed, any professor can distinguish pre-

cisely between the research and educational aspects of, for example,

a conference with a graduate student. Consequently, a report in

*Since this section was written, the Bureau of the Budget has, in response to the

opposition of virtually all universities and many federal administrators as well,

dropped most of its time and effort reporting requirements for university pro-

fessorial staff [see "Effort Reporting: Government Drops Much-Criticized Paper-

work," Science, 160, 1322 (June 21, 1968)]. We feel, however, that the present

clear statement of the mathematical community's position on the matter may

still be of value, as a cautionary reminder of the issues of integrity and univer-

sityprofessor relations involved.
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definite quantitative terms of a scientist's allocation of his time to
various activities over a short period (a month or a quat ter) is im-
possible to give honestly and meaningfully; this impossibility is
particularly acute for a mathematical scientist. To impose a require-
ment that is impossible of honest fulfillment is to undermine the
traditional and essential relation of mutual trust and good faith
between the scientist and his university.

An acceptable arrangement must recognize that in many univer-
sities a professor's salary is not paid exclusively for his teaching but
in large part for his research on problems of his own choosing.
Furthermore, no sharp line can be drawn between the part of this
research that is performed with outside support and the part that
is performed as part of the professor's general obligation to the
university.

We therefore urge that federal fiscal offices and university busi-
ness officers work with the academic research community to develop
accounting requirements, appropriate to each individual university
and discipline, that will provide proper information in a way that
will preserve the integrity of the scientific community. We also note
the following resolution passed by the Council of the American
Mathematical Society meeting in Toronto on August 29, 1967:

The Council of the American Mathematical Society urges responsible uni-
versity officers to take immediate action to have Time and Effort Reports
and similar documents pertaining to faculty members' time eliminated, be-
cause it considers that such documents are incompatible with academic life
and work. The Council reiterates the traditional view that teaching and
research are inseparable, and that accounting procedures in universities
must take account of their unitary character.
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Federal Support of Education

In this chapter we survey federal support of higher education in
the mathematical sciences, considering separately graduate educa-
tion, postdoctoral research education, and the continuing education
of college teachers. Under this last heading we also note briefly the
National Science Foundation's support of certain other activities
designed to improve undergraduate education, notably the valuable
studies and conferences of the CUPM. As observed in the introduc-
tory paragraphs of Part III, our report does not concern itself

directly with the extensive activities in support of curriculum re-
vision and continuing teacher training for the elementary and
secondary school levels.

GRADUATE EDUCATION

Where graduate students are concerned, federal support of research

merges directly into support of education. In fact, one form of
graduate-student support, research assistantships, has already been

noted above in our discussion of project grants. More important,
the intellectual activities central to research and advanced graduate
education are literally inseparable, a point that has also been
emphasized in the preceding chapter.

The CBMS survey found that in academic year 1965-1966 some

750 research assistants were supported on project grants in the

mathematical sciences. We observe that, since some 900 senior
mathematical scientists (associate and full professors) were on
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federal research grants for the summer of 1966, this gives an average
ratio of less than one research assistant to each senior research
grantee. We feel that the research assistantship is a valuable form
of graduate-student support, especially because of the local control
and flexibility in the appointment of research assistants. As a goal
for the immediate future, an average ratio of one research assistant
to each senior research grantee would seem reasonable, with the
ratio continuing to be highest in such mathematical sciences as
computer science and statistics, as is the case now.

Apart from research assistantships, federal support of graduate
students assumes two principal forms: fellowships and traineeships.
With the exception of fellowships awarded under the National
Defense Education Act (NDEA), fellowships are awarded by the
granting agencies directly to students. Traineeships and NDEA
fellowships are awarded in blocks to institutions, which in turn
award them to students. For fiscal 1966 the CBMS survey found that
some 1,200 graduate students in the mathematical sciences were
supported on federal fellowships and some 630 on federal trainee-
ships. The total magnitude of this support was slightly over $10
million, as shown in Table 15.

TABLE 15 Federal Fellowships and Traineeships in the Mathe-
matical Sciences for Fiscal Year 1966

FORM OF SUPPORT $ MILLIONS

NSF predoctoral fellowships
NDEA graduate fellowships
Other federal fellowships
NSF traineeships
Other federal traineeships
NSF summer fellowships for teaching assistants

3.1

3.1

0.2
2.0
1.6

0.2

TOTAL 10.2

Altogether, federal fellowships, traineeships, and research as-

sistantships supported about 28 percent of the approximately 9,400
full-time mathematical-science graduate students in U.S. universities
in academic year 1965-1966, as Table 16 shows in more detail.

As noted in the preceding section, we feel that it is federal sup-
port of graduate students together with federal project-grant sup-
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TABLE 16 Sources of Support of Graduate Students in the Mathe-
matical Sciences in Academic Year 1965-1966

SOURCE OF SUPPORT
NUMSER

SUPPORTED

PERCENTAGE

SUPPORTED

Federal fellowships 1,03 13
Federal traineeships 632 7
Federal research assistantships 754 8
Private fellowships 366 4
Teaching assistantships 3,625 38
Self-supporting 9,782 30

iorms 9,362 100

port that has been decisive in the rise of the United States to a posi-
tion of world pre-eminence in the mathematical sciences, and that
these forms of support will be decisive for the maintenance of this
U.S. position in the future. Furthermore, in the face of the inten-
sified shortage of qualified college teachers of the mathematical
sciences discussed in Chapter 7, we are especially concerned that
federal fellowship and traineeship programs at least keep pace with,
and support, the projected 10 percent per year growth in mathe-
matical-science PhD production. Thus we would recommend that
federal fellowships and traineeships combined continue to support,
as Table 16 shows they did in academic year 1965-1966, about 20
percent of the expanding full-time graduate-student population in
the mathematical sciences (see Chapter 2, Recommendation 11).

In accordance with recommendations of our Panel on Under-
graduate Education, we also propose two special-purpose programs
for support of graduate students in the mathematical sciences.
Their aim is to broaden and improve opportunities for graduate
study by women and by graduates of weaker or less well-known
colleges.

The first of these programs, for women, is designed to offset to
some degree the dropout rate of women between receipt of the
BA and PhD degrees, a rate which postwar figures suggest is perhaps
six times as high as the rate for men. The program recognizes that
a woman's graduate study may have to be part time or may have to
involve retraining after several years' absence. The specific recom-
mendation to federal funding agencies is for 100 special part-time
graduate fellowships for women. Accompanying this is a recommen-
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dation to academic institutions to provide more opportunities for
part-time employment of women and in particular to remove
nepotism rules that prohibit or restrict teaching in the same insti-
tution by husband and wife.

The second of these programs, for graduates of weaker or less
well-known colleges, is designed to afford such students the oppor-
tunity to prove themselves in their early graduate years and to
encourage them, if successful, to enter college teaching. The pro-
gram recognizes that such students represent a "higher risk" and

that they may require extra preparatory courses prior to full grad-
uate work. The proposal calls for tuition scholarships, perhaps 200

a year, supplemented by "forgivable loans" to cover the initial years
in graduate school, with a portion of the loan, perhaps 20 percent,
to be forgiven for each year the student subsequently spends in

college teaching.
More details concerning these two special proposals and the

problems they are designed to meet are given in the Report of our
Panel on Undergraduate Education,1 Chapters 1 and 5.

POSTDOCTORAL RESEARCH EDUCATION

A limited number of research mathematical scientists are supported
under various federal postdoctoral fellowship programs. The CBMS

survey found that during academic year 1965-1966 approximately

100 U.S. mathematical scientists were in residence at U.S. univer-
sities under postdoctoral fellowships and research instructorships.
About one third of these were holding awards under the National
Science Foundation's regular and senior postdoctoral fellowship
programs. Such awards have remained fairly steady in number over
recent years, as Table 17 shows.*

We feel that, especially for the young research investigator, more

such support is needed. In all sciences, and certainly in the mathe-

matical ones, the immediate postdoctoral years are crucial for
firmly launching young PhD's on research careers. At the same

* Added in proof: Owing to lack of funds, the National Science Foundation has

entirely suspended for academic year 1968-1969 its program of senior postdoctoral

fellowships. See Fellowships and Research Opportunities in the Mathematical
Sciences, Division of Mathematical Sciences, National Research Council, Septem-

ber 1968, p. S.
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TABLE 17 National Science Foundation Regular and Senior Post-
doctoral Fellowships in the Mathematical Sciences

FISCA L YEAR

REGULAR SENIOR

POS I'DOCTORALS POSTDOCTORAIS

1962 17 5

1963 29 5

1964 26 7

1965 21 8

1966 27 7

time many feel that capable young PhD's at academic institutions
should be doing some teaching as well as research during these
years and should be encouraged to seek teaching positions in a
broader range of colleges and universities.

Research instructorships and postdoctoral fellowships are pres-
ently available for no more than 100 young mathematicians each
year; but we feel that by 1969, which is as early as new programs
could be implemented, such opportunities could profitably be
offered to 200 or 300. This would be about 20 to 30 percent of the
1,000 PhD degrees that we may reasonably anticipate will be
awarded in the mathematical sciences in 1969. (Young's PhD
study in the CBMS Survey Reportn suggests that in recent years
only approximately 15 percent of the PhD's in the mathematical sci-
ences have become consistently productive research mathematicians;
it is this percentage that we believe can be improved.) For this
situation we would like to recommend to federal funding agencies
two new programs of teaching fellowships for the immediate post-
doctoral years.

The first proposal, coming from our Panel on Undergraduate
Education, calls for approximately 50 two-year teaching fellowship
awards for young PhD's who would carry out research activities at
a major mathematical center while teaching a course or two at a
nearby smaller college. The purpose is the dual one of helping to
launch young PhD's on academic careers of research and teaching
while encouraging the distribution of such research and teaching
talent to a broader range of colleges.

Another proposal deserving serious study would offer two-year
teaching fellowships for postdoctoral training at regional centers
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located at well-established mathematical centers around the country.
Beyond the objective of further training in research and acquisition
of teaching experience, there would be the hope that, after two
years of working together, small groups of these trained PhD's
might be willing to go together to form research nuclei in a uni-
versity or in a geographical cluster of smaller colleges.

CONTINUING EDUCATION FOR COLLEGE TEACHERS

The report1 of our Panel on Undergraduate Education and
Chapter 9 of the present report have emphasized the importance
of keeping college teachers of the mathematical sciences profes-
sionally alive and knowledgeable about new developments.

The principal academic-year program with this objective is the
National Science Foundation Science Faculty Fellowship Program.
Table 18 shows the numbers of mathematical awards under this
program in recent years.

TABLE 18 National Science Foundation Science Faculty Fellow-
ships in the Mathematical Sciences

FISCAL YEAR

POSTDOCTORAL PREDOCTORAL

FELLOWSHIPS FELLOWSHIPS

1962 18 49

1963 19 57

1964 23 59

1965 16 60

1966 16 72

The Science Faculty Fellowship Program offers an excellent way
to upgrade and update college and university faculty in the mathe-
matical sciences. In view of the continuing and seriously growing
need for such upgrading and updating, this NSF program merits very
considerable expansion. As a minimal objective, the Science Faculty
Fellowship Program should be expanded gradually to provide for
about 150 awards in the mathematical sciences by 1971, roughly
double the number in recent years. Fiscally this would amount to
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an expansion from $1 million to perhaps $2.5 million by 1971. Our
Panel on Undergraduate Education has estimated that a program
of this expanded size would offer opportunity for awards to approxi-
mately one quarter of the doctorate faculty and one half of the non-
doctorate faculty at least once in their teaching careers.

Only a very limited number of the more than 10,000 college
teachers of the mathematical sciences can be on leave in any given
academic year to take advantage of fellowship programs. The most
favorable time for training activities for larger numbers of college
teachers is during the summer. The NSF already sponsors limited
programs of such summer activities for college teachers in the form
of summer institutes, research-participation projects, and short
courses, conferences, and seminars. For college mathematical-science
teachers in the summer of 1966 the total magnitude of these pro-
grams was approximately $1.4 million, the major item being sum-
mer institutes of various sorts.

The Mathematical Association of America has urged a greatly
expanded program in this direction in a resolution addressed to the
Congress of the United States and the officers of the NsF.4 In addi-
tion, the Association's Committee on Institutes and the Panel on
College Teacher Preparation of CUPM have issued a joint report on
summer institutes5 which says, in part, ". . . a greatly expanded
effort in the direction of summer institutes of all types is urgently
needed . . . Even if summer institutes are to reach only 10 percent

of all college mathematics teachers each summer, the number of
institutes will need to be approximately tripled."

The NSF also supports, at a modest level, certain other activities
designed to improve undergraduate education in the mathematical
sciences. Support of these activitiesencompassing course content
improvement programs, curriculum conferences, acceleration of
student development, instructional equipment, and visiting scien-
tistsamounted in 1966 to approximately $2.7 million. An espe-
cially important item here has been support of the Committee on
the Undergraduate Program in Mathematics. The published cur-
riculum studies and recommendations of CUPM have formed valu-

able guidelines for college curriculum development in the mathe-
matical sciences; these have, in fact, been used extensively by our
Panel on Undergraduate _Education in writing its report. We feel
that continued support of CUPM, as well as of the college visiting
lecturer program and these other NsF-funded activities, is justified,
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and we heartily endorse the resolution of the Mathematical Asso-
ciation of America to this effect.4

In concluding this section we invite attention to the reporti of
our Panel on Undergraduate Eduction, and particularly Chapters
5 and 6 of that report, in which the special problems and needs
of the undergraduate teacher of the mathematical sciences are dis-
cussed in detail.
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Private Foundations

Private foundations play a special role in the support of research
and teaching in the sciences. It is generally their aim to seek out
innovative activities and modes of support rather than to contribute
toward the kinds of support already being provided by federal or
other agencies.

Where the mathematical sciences have participated in the grants
of private foundations it has usually been as a feature of projects
to strengthen research and teaching in the sciences generally or to
enhance the scientific capabilities of some institution. Also, in
grants made by private foundations for other purposes, the mathe-
matical. sciences have appeared as tools, as, for instance, in the con-
structhin of mathematical models as one of the activities supported
under grants in economics. It is thus difficult to separate out the
mathematical-science portion of support by private foundations,
and any attempt to do so must be somewhat arbitrary.

Here attention is focused on grants or portions of grants by
private foundations made to aid or encourage work "by mathe-
maticians in a mathematical setting," including work in both pure
and applied mathematics but attempting to exclude mathematical
activities incidental to projects in other fields.

GRANTS BY PRIVATE FOUNDATIONS

Over the period 1955-1966 the seven private foundations most
heavily concerned made grants in the mathematical sciences total-
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TAnE 19 Grant Support of the Mathematical Sciences by PrivateFoundations from 1955 through 3966

FOUNDATION TOTAL 1955-1966
(S MILLIONS)

Carnegie Corporation of New York
3.2Ford Founda t ion
3.3John Simon Guggenheim Foundation 0.4Louis W. and Maud Hill Family Foundation 0.6Research Corpotation
0.2Rockefeller Foundation
1.1Alfred P. Sloan Foundation

10.4

19.2

ing some $19.2 million, as shown in Table 19. This would indicatethat the total annual contribution of grants by private foundations
toward research and higher education in the mathematical scienceshas averaged somewhat under $2 million in recent years.

The purposes for which these grants were made have included theformation of n. w mathematical centers (including the constructionof buildings), strengthening of existing departments, research
fellowships, special research support for younger mathematicians,
strengthening of ties between pure and applied mathematics, stimu-lation of the use of computers, establishment of regional centers oflearning, and a variety of other activities to improve curricula andteaching in the mathematical sciences. More details are given inAppendix C.

COMMENTS

We applaud the unique pioneering efforts of the private founda-tions in support of research and education in the mathematical
sciences and feel that these foundations can hardly do better than
to continue to seek out for support new activities and those thatdeserve more support than they are receiving from other sources.

Specific kinds of projects that our panels have commended to theattention of private foundations for possible support include thefollowing: selected new programs for the continuing education ofcollege faculty; new and experimental systems of publication and
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communication; new graduate-level curriculum studies by the Com-
mittee on the Undergraduate Program in Mathematics; studies
evaluating present programs of degrees intermediate between the
MA and the PhD, and gauging their acceptance by academic ad-
ministrators and accrediting agencies; physical facilities (such as
needed office space or departmental libraries or common rooms) not
otherwise available; programs for graduate education or retraining
directed toward the special problems and needs of women mathe-
maticians; experimental regional centers for curriculum and course
development; special studies of the problems of the underdeveloped
colleges.
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Industrial and Government
Laboratories

A significant number of industrial and government laboratories
support research and educational activity in the mathematical sci-
ences. Accurate and comprehensive data on the extent and character
of this support are, however, almost completely lacking. In order to
garner preliminary information on the basis of which a rough
assessment could be made and more systematic surveys might be
underken in the future, COSRIMS and the CBMS Survey Committee
jointly sponsored a Panel on the Mathematical Sciences in Industry
and Government.

This Panel invited statements regarding their mathematical re-
search and educational activities from a sample of industrial and
government laboratories where such activities were known infor-
mally to be substantial. Those from which responses were received
included the following:

Argonne National Laboratory
Bell Telephone Laboratories
Bettis Atomic Power Laboratory (Westinghouse Corporation)
Boeing Scientific Research Laboratories
David Taylor Model Basin
International Business Machines Corporation
Lockheed Palo Alto Research Laboratory
Los Alamos Scientific Laboratory
MITRE Corporation
Mobil Oil Corporation
National Bureau of Standards
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Pacific Northwest Laboratory (Battelle Memorial Institute)
RAND Corporation
Sandia Corporation Laboratory

The strength and variety of mathematical activities exhibited in
the responses of these selected laboratories is no doubt considerably
greater than in industrial and government laboratories generally.

ACTIVITIES AT SOME MAJOR LABORATORIES

Activities at the above-listed laboratories in support of mathemati-
cal research and higher education are quite varied and in some
instances surprisingly extensive. Industrial laboratories have some-
times made developmental grants in the sciences to institutions of
higher education and, occasionally, grants-in-aid directly to depart-
ments of mathematics. They have also on occasion endowed dis-
tinguished ch&'.., of mathematics in universities. Activities of these
kinds are certa;nly valuable and deserve to be applauded and en-
couraged. The main contribution of industrial and government
laboratories to the mathematical sciences lies, however, in their
own in-house research and education efforts, and in the interplay
of these with work in universities. The proportion of PhD's to total
staff in the mathematical sciences at such laboratories is generally
much lower than in a university. Naturally an attempt is made to
appoint PhD's whose research interests will fit in with those of the
laboratory, but, once appointed, such a PhD will normally be given
very considerable freedom in his research activities. Direct consult-
ing on company problems typically plays a relatively minor role,
and self-initiated basic research may play a very considerable one.
In this way there is direct support of mathematical research on the
part of industrial and government laboratories, and top mathe-
maticians from these laboratories are among frequent contributors
of mathematical research articles and monographs.

At their best, the physical facilities and general conditions of
work in these laboratories can be quite attractive. Technical
libraries and library services tend to be good, and there are usually
active in-house seminars and colloquia in various branches of the
mathematical sciences. Provision is frequently made for bringing in
distinguished university mathematicians as consultants and research
collaborators, for periods varying from a day or two to several weeks
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or a full summer or year. In the other direction, the laboratory may
give a year's leave of absence to a distinguished mathematician on
its staff when he is invited to serve as a visiting professor at a uni-
versity. In such a case, the laboratory may supplement his uni-
versity salary. The laboratory may also provide released time to its
mathematical scientists for teaching individual graduate courses at
nearby universities.

Several industrial and government laboratories have attractive
fellowship programs under which selected employees may study
part time for PhD degrees in the mathematical sciences at neighbor-
ing universities. These programs will often provide for a year's
leave of absence, at three-fourths to full pay, to work on a disserta-
tion. The over-all magnitude of such programs is modest but not
negligible. Thus the CBMS survey found that, for academic year
1965-1966, out of some 1,570 federal and private fellowships for
full-time graduate study in the mathematical sciences, approxi-
mately 55 were sponsored by industry, through not all of these were
fellowships for employees.

There are also laboratory-supported programs of graduate mathe-
matical education for employees at somewhat lower levels. In one
strongly research-oriented industrial laboratory it is standard prac-
tice for incoming bachelors in engineering and in mathematics to
take, as part of their work for the company, a two- to three-year
half-time educational program. Some of the courses are taught in
extension programs at the laboratory itself, but part of the work is
conducted at nearby universities and normally leads to a master's
degree. The program for engineering bachelors is heavily weighted
in the direction of mathematics, while the program for mathe-
matics bachelors generally includes intensive work with com-
puters.

THE GENERAL SITUATION AND ITS PROBLEMS

The above paragraphs have depicted qualitatively, at their present
best, an enlightened attitude toward mathematical-research activ-
ities among a few major industrial and government laboratories
and a healthy interaction between these activities and those of the
mathematical-science departments of universities. It would be quite
misleading, however, not to emphasize tha t this enlightened attitude
and healthy interaction appear to be far from the norm.
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Many applied mathematicians feel that industrial and govern-
ment laboratories have generally Tailed to use mathematicians effec-
tively and, what is worse, are unable to imagine or evaluate the
mathematician's contribution. Informal interviews with numerous
mathematicians in technologically sophisticated industries suggest
that the majority of these mathematicians are in a kind of limbo
in their companies. Some industrial mathematicians are vigorous in
asserting that management does not use, or know how to use, their
services. Too many industrial mathematicians are regarded as
"mathematical repairmen," people kept around to "fix mathe-
matics that is breaking down" but in activities of a rather routine
nature.

Partly, the problem is one of communicating effectively, so that
the mathematical talent within an industrial organization can be
brought to bear on its mathematical problems. Many "applied
mathematics sections" in industry have failed because this problem
was not solved. On the other hand, whcn a company tries to
"sprinkle" its mathematicians throughout the organization, com-
munication lines tend to be very localized, and each mathematician
is unrealistically expected to be a jack of all trades. Continued fail-
ure to solve such extremely difficult problems threatens to impede
the effective use of mathematicians in industry for years to come.

There is also a problem of lack of communication and cooper-
ation between the academic world and industrial and government
laboratories. Quite a few industrial and applied mathematicians
feel that the academic world is content with this situation, and that
by and large universities are making little effort to prepare mathe-
maticians for positions outside universities. This is a principal
reason for our recommendation below for increased exchanges be-
tween laboratories and universities.

COMMENTS

We feel that more young mathematicians could be profitably drawn
toward the work of industrial and government laboratories; thus
we recommend that a special effort be made to increase the oppor-
tunities for postdoctoral research appointments in such laboratories.
Specifically, a group of cooperating industries might undertake to
support postdoctorals and to evaluate applications for postdoctoral
appointments to industrial laboratories on a national basis through
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a committee of the National Research Council. At the same time
we recommend an increased reverse flow of more senior mathe-
maticians from industrial and government laboratories to univer-
sities on a temporary basis; we feel that such laboratories should be
encouraged to send personnel to universities for a year or two after
several years of work in the laboratory. In this connection, we call
attention to the desirability of extending more senior postdoctoral
opportunities to industrial personnel. The advantages of using more
industrial personnel in graduate teaching and research direction
should also be recognized. This should be encouraged, either as a
form of industrial support of the universities or as a program sup-
ported by a combination of government and university resources.

We point out the desirability of studies leading to more accurate
and comprehensive information on work in the mathematical sci-
ences in industry and government, including present and projected
manpower estimates at various levels of mathematical training. The,-- qualitative picture drawn in the discussion of Activities at Some
Major Laboratories (page 191) has emerged from case studies of a
few of the country's major industrial and government laboratories.
A more comprehensive study should include all these laboratories
and the changing picture of mathematical work in industry and
government generally. In particular, it should take account of the
smaller mathematical consulting firms now springing up, firms that
contract with a variety of industrial and commercial customers to
do computer programming and systems analyses and mathematical
operations-and-management studies.

1
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The intellectual content and the present state of the mathematical
sciences have been described in Part II. In Part III we have con-
sidered the educational problems of these sciences, and in Part IV
we have discussed the present status and trends of financial support.
In Part V we first discuss the tasks and needs of the mathematical
sciences, primarily as far as research support is concerned. The final
Chapter places these tasks and needs in the context of the mathe-
matical sciences' total service to society.
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Tasks and Needs

It is inevitable that in considering the tasks and the needs of the
mathematical sciences we treat the various disciplines separately.We hope that this way of presentation will not obscure the in-
tellectual ties between the mathematical sciences. To preserve these
ties is itself an essential need of the mathematical community.

Over and above the specific needs enumerated below, there is a
general need of the mathematical sciences, and of sciences in general,
for an atmosphere in which they can flourish. This involves not only
the availability of financial support but also a broad understanding
of and appreciation for intellectual endeavor, a willingness to sup-
port theoretical work, and an uncompromising commitment to in-
tellectual freedom.

THE CORE

Research within the core is primarily concerned with identifying,
extending, and refining the critical concepts that serve to organize
mathematical thought and with the precise analysis of the inter-
relations of these concepts. It is often the concepts and theorems of
the core areas that breathe life into the applications of mathematics.
Support for research in the core subjects thus represents capital in-
vestment in mathematics.

As an illustration, we mention that electrical engineers, computer
scientists, and others are now demanding that the undergraduate
curriculum in mathematics should include a sizable amount of so-
called discrete mathematics. This includes such topics as the theory
of algorithms, lattice theory, graph theory, and other parts of corn-
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binatorial mathematics. All these topics grew up in or around
algebra at a time when it seemed that, for the most part, only "con-
tinuous mathematics," that is, mathematical analysis, was of concernto applications.

Up to now, most mathematical ideas and techniques have been
developed within the core, though often as a response to challenging
problems coming from outside mathematics. There is every reasonto believe that the process will continue. The central core of mathe-matics is also the laboratory in which progress in mathematical
sciences is ultimately unified and integrated. Finally, it provides anunequaled training ground for mathematicians in all fields. Manyleaders in the new applied areas of mathematical sciences receivedtheir training in the rigorous atmosphere of established pure mathe-matics. Many future leaders in these fields, as well as leaders in fieldsnot yet initiated, may also develop in this way.

It is our opinion that maintaining the health and vigor of researchin core mathematics is essential for the health of all the mathe-
matical sciences and, indeed, for our scientific life as a whole. It
would be tragic if a misdirected drive for immediate applicability ora dominant criterion of social usefulness should be permitted to de-stroy or weaken the position of unchallenged leadership in mathe-
matics now occupied by this country.

It is useful to examine how much support has been directed tothe core areas of mathematics and how effective it has been. Classify-ing research by subject matter presents far less of a problem than
classification as pure or applied. Still, boundaries between subjectsare not sharp, and it is not always possible to identify the subject of
a research project by looking at its title. Probability theory, for ex-ample, presents a particular problem, because a great deal of the
support for research in probability has been administered in con-nection with statistics.

Altogether the federal government seems to have spent approxi-mately $15 million on core-area research in fiscal year 1966. With
some reservations concerning the accuracy of our classification, itappears that the Mathematical Sciences Section of the National Sci-
ence Foundation (NsF) obligated about $8 million to the support ofcore research in fiscal year 1966 out of a total obligation of $14.9million, The three Department of Defense (DoD) research offices
the Army Research Office, the Office of Naval Research, and the Air
Force Office of Scientific Researchhave each devoted about 40
percent of their mathematical research budgets to core subjects. For
fiscal year 1966 this came to $5.8 million for core research. Although



Tasks and Needs 199

a much larger sum ($124.9 million) was reported as obligated in
fiscal year 1966 by various federal agencies to research in the mathe-
matical sciences, very little appears to have been spent on core re-
search except through NSF and the three DOD offices. The National
Aeronautics and Space Administration, for example, spent $91,000
on core research out of a total of more than $7 million for mathe-
matical research. No doubt the largest unaccounted federal contri-
bution to the core areas came through the research done by full-time
employees of the government and of private research institutes such
as RAND and the Institute for Defense Analyses, which are largely
supported by the government.

There can be no doubt that American mathematics has moved into
a position of world leadership during the period in which federal
support of science has grown. But it would be difficult to decide to
what extent this is due to research support. We can, however, inquire
whether the money does or does not go for the support of those
mathematicians who are actually producing the research that justi-
fies the country's claim to leadership. A check of three leading Amer-
ican mathematical-research journals (American Journal of Mathe-
matics, Annals of Mathematics, and Journal of Mathematics and
Mechanics) for 1966 shows that 133 of the 221 papers (about 60
percent) published carry a footnote acknowledging federal support
of the research reported. A similar count in a journal devoted to
short papers (Proceedings of the American Mathematical Socieiy)
showed that 49 of 113 papers (about 40 percent) in two issues
acknowledged federal support. These figures show that federal
money has been involved in a truly significant portion of the mathe-
matical research being done in this country.

It appears that the support has been effective, since great progress
has been made toward the goals that might reasonably have been
set 10 or 15 years ago. There has been astonishing progress within the
discipline itself; a number of long-standing problems have been
solved that a dozen years ago seemed almost unapproachable. More-
over, this activity in the core seems to have had the desired indirect
effects. Techniques and concepts invented to solve core problems are
finding applications in other areas, interest in mathematics has
increased, and the number of mathematicians has grown signifi-
cantly. While some local dissatisfactions exist, as they inevitably
must, there is every reason to be pleased. with support policies as they
have affected the core areas until now.

Although there has been a generally satisfactory pattern of support
in the past, the signs for the future are disquieting. The gross budget
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for mathematical sciences in the four agencies that support core
mathematics was fixed for fiscal year 1967 at about the same size as
that for fiscal year 1966. Coupled with the new rules, which allow a
larger proportion of direct costs to be charged as overhead, a net
decrease in funds for core research in mathematics is to be expected
at a time when both the per capita cost of research and the number
of qualified investigators have increased.

If funding does not show an increase commensurate with the net
growth of the nation's mathematical activity, we must expect that
the forces that have linked the expansion of core research to the
general expansion of mathematical competence will work in reverse.
Needless to say, at a time when the demand for mathematically
trained personnel is expanding in every facet of our society, such
a reversal would be regrettable. We may be simply unable to meet
our needs in the areas of general science, education, technology,
technical management, and defense.

In an area in which the effects of support on major national goals
are only indirect, it is extremely difficult to judge the optimum levels
of support. The core areas in the mathematical sciences have been
making very good progress in recent years on support, which has
been increasing at about 18 percent per annum. No one can say that
this rate is necessary to achieve our goals, but it would seem im-
prudent to allow the growth to fall significantly below this level at a
time when, according to all estimates, further expansion is necessary.

A specific need of core mathematics is the preservation of the es-
tablished great centers. Their importance should not be obscured
by the recognized need to develop new centers of research and edu-
cation. A great center of mathematics requires a certain critical num-
ber, never precisely determined, of first-rate mathematicians. It must
attract some of the best students. At such a place there is a spirit of
high tension, an awareness of the important problems, and a willing-
ness to explore new approaches and to accept new ideas, coupled
with a sense of history and uncompromisingly high standards.*
*A famous example of a great mathematical center was the University of Got-
tingen in Germany. Gottingen was the world capital of mathematics until 1933.
Its fame dates from the times of Gauss and Riemann, but it became a great school
only later, primarily under the intellectual leadership of Felix Klein and Hilbert.
Almost every leading European mathematician spent some time of his life at
Göttingen; it was also a place of pilgrimage for many American mathematicians.
The destruction of mathematics in Gottingen by the Nazis, however, shows how
fragile a scientific center is. During the two decades after the end of World War
II, several first-rate mathematicians have appeared in Germany, but COttingen,
and Germany as a whole, have not regained their former stature in mathematics.
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At present there are more first-rate mathematical centers in the
United States than in the rest of the world. Nowhere else, with the
exception of Moscow and Paris, is there such concentration of lead-
ing mathematicians in various fields as in the five to ten leading
American universities. Princeton, the Cambridge area, the New York
area, the Bay area in California, and Chicago are well recognized as
exceptionally strong centers of mathematical life. There are also
several strong centers at the great state universities. (The recent rat-
ing by the American Council of Education,32 which lists nine "dis-
tinguished" and 16 "strong" departments of mathematics reflects
well the general feeling within the mathematical community.)

The strongest mathematical centers play a triple role. They attract
some of the most talented undergraduates and in most cases give
them an excellent education. In comparison with PhD degree-grant-
ing universities generally, they produce a disproportionately large
number of PhD's in mathematics, and an even larger percentage of
the really outstanding ones. (This is documented in Appendix E.)
They also serve as centers for postdoctoral education, either as a
major function, as in the case of the Institute for Advanced Study,
or, more incidentally, through special research instructorships, ter-
minating assistant professorships, and visiting professorships. Also,
most of the outstanding research in mathematical sciences is done
at the great centers.*

PHYSICAL MATHEMATICS

An essential task of physical mathematics (sometimes called classical
applied mathematics) is to strengthen the intimate interplay be-
tween mathematics and the physical sciences for the benefit of both.
This is closely connected with teaching and research in the universi-
ties, which should provide the appropriate setting in the form of
faculty positions or even departments. Although physical mathe-

* One should always remember, however, the many exceptional cases. A single
outstanding teacher in a place located far from established centers may succeed
in educating a large number of research mathematicians. R. L. Moore in Texas
is the striking example. A brilliant investigator may make historic discoveries
while isolated from a major mathematical communityS. Lefschetz during his
Kansas stay, for instance. An important discipline may develop entirely at a sec-
ondary place. For example, the recent theory of trigonometric series was mainly
created by a large number of workers in a large number of places other than the
major centers. See also S. Lefschetz, "A Page of Mathematical Autobiography,"
Bull. Amer. Math. Soc., 74, 854 (1968).
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matics is primarily concerned with mathematical physics in general
and mechanics in particular, the same spirit can be applied to other
mathematical sciences, such as mathematical economics, mathe-
matical biology, and the basic parts of computer science. It is in a
comprehencive approach, with a view toward the interplay among
the major lines of research, that one can see the most rewards. One
may expect that mathematization of new areas in science and tech-
nology will result, and that new problems within mathematics itself
will be uncovered as well. Thus, the contribution of the physical
mathematician to society extends from the very practical aspects of
engineering to engineering science, to basic science, and to the
stimulation of pure mathematics itself.

Like core mathematics, physical mathematics needs the support of
federal funds that will grow in proportion to the growth of the
number of workers in the field. The physical mathematician must,
however, be concerned with both the mathematical and the scientific
aspects of his work; that is, he must bring his theories to the point of
comparison with experiments and observations from time to time.
This will usually result in a somewhat wider scope of activities (such
as extensive numerical computations) and therefore a greater need
of funds. In exceptional circumstances, it might even lead to large-
scale computing operations. (One such example is Von Neumann's
development of numerical weather forecasting.)

Unlike certain other countries, especially Great Britain, the
United States lacks a long tradition in physical mathematics. For
this reason too, the current level of federal support of this field is
not so high as it should be. For a few years, therefore, it may need
to grow at a higher rate than the average for all mathematical sci-
ences. There should be a conscious policy of federal support for the
research of new faculty members in physical mathematics appointed
at the various universities.

Industrial organizations can also provide support for physical
mathematicians in the form of research and consultant groups.
There is great potential value in the flexibility and breadth of
knowledge that the physical mathematician brings to his approach
to a number of scientific and technological problems. Some indus-
trial organizations and government laboratories already have excel-
lent mathematical-research groups. Hopefully, for the future we may
look forward to the continuation and expansion of such groups.
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Statisticians with research training are needed to fill very different
places in our society. First, there is a need for mathematically trained
and competent people to develop statistical techniques and evaluate
them. Such persons should have an appreciation of how statistical
methods are used and what the objectives of statistical applications
are. Other statisticians with research training as well as some mathe-
matical competence have great opportunities in positionsaca-
demic, industrial, governmentalthat involve consulting on the
problems of other workers. Many of the great advances have been
and still are being made by statisticians of this type. Statisticians who
can take operational responsibilities in connection with surveys and
other large data-gathering operationsgovernmental, industrial, or
nonprofitare also badly needed. In their turn, some of them have
made basic contributions. Many statisticians operate as individuals
within organizations of quite diverse kinds.

There are still great needs for routine work, particularly at the
lower levels of survey organizations and in the organizations that
spot statisticians singly here and there, but more and more of this is

now being done by computers. Statisticians are thus increasingly
concerned with innovation. When a problem is posed to him, a sta-
tistical consultant may decide that some standard technique can be
used; even this often requires innovation in subject-matter concepts.
The innovation is more likely, however, to take the form of a newly
modified technique. As a consequence, research training is more
widely needed than it might seem to be :itt first sight.

There are demands for new and better formulations of what users
of statistics are trying to do, for better and more detailed mathe-
matical treatments of many problems, for the re-examination and
modification of many results and techniques to make them more
closely matched to the situations in which they are in fact used, for
innovation in the form of new techniques, some for wholly new
purposes, and for innovation in how modern computing systems are
to be put to work (as well as in how their results are to be presented
to humans), to name some specific areas. The demands for innova-
tion, coupled with strong demands for many more people with re-
search training to work in a variety of ways, continue to stress
research and research training in statistics.
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These demands go well beyond what statisticians are presently
able to cope with. The weakest link is the number of students quali-
fied and motivated to enter graduate study. We have discussed this
problem in the section on Statistics (page 156). Continued expansion
of research support is of course essential. As the supply of candidates
for graduate study improves, research support may well grow at a
somewhat greater rate than in the mathematical sciences proper.

On some campuses, the independent existence of both statistics
and computer science poses problems of cooperation and mutual
stimulation. On all campuses, making adequate use of modern com-
puting systems in teaching and learning statistics at all levels is of
great and growing importance. In this activity, two crucial aspects
are: (1) the invention and provision of programming systems that
make it easy to do what statisticians have always done to data and,
as soon as may be, what statisticians should do to data now that they
have modern computing systems, and (2) financing the use of col-
lege and university computers by these students.

Most teaching in statistics is "service" teaching, in which the
guidelines of the Pierce report,3 once followed, should provide the
needed financing of computer time. Courses predominantly taken by
statistics majors, or by potential graduate students in statistics, are
likely to require considerably greater contact with modern comput-
ing systems, involving correspondingly increased costs. Means for
financing such costs are also urgent.

Invention and adaptation of programming systems to meet these
needs more effectively is likely to involve elements of research in at
least three fields: computer science, statistics, and communication.
Support of such research on a selective but diversified basis will be
of importance.

As in the case of other frontier fields that are both mathematical
sciences and something else, competition for fellowships may be
viewed as likely to be unfair to statistics candidates unless statis-
ticians are unusually well represented on the selecting group, and
unless these statisticians are sensitive to the extramathematical abili-
ties of the candidates as well as to their mathematical abilities.
Changes in practice that make it clear that there are no inequities
of this sort would be very worth while. Separate panels for statistics
candidates have been suggested; the adequacy of separate panels
combining all applied fields of mathematical science where, as noted
in the section on Applied Mathematics (page 149), attitudes are de-
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sirably different than in core mathematics, probably deserves care-
ful discussion.

COMPUTER SCIENCE

Three related aspects of computer science make it very likely that
unusually rapid payoff will result from a heavy investment in re-
search during the next few years. First, it is a field of strikingly rapid
growth in which significant theoretical advances are still being made.

Second, because organized complexity is becoming a way of life in
the United States, and because computers are well adapted to deal-
ing with such complexity, the solution of many important problems
awaits research in computer science. Indeed, there are problems of
information processing, vital to many citizens, for which computing
systems hold the only foreseeable means of solution. Some striking
examples are air and automobile traffic control, management science,
information-retrieval problems, and nationwide credit and popula-
tion records. Of special national concern are applications in medical
science, space science, oceanography, weather prediction, and air-
defense problems. However, the solution of these and other impor-
tant problems will come only after extensive research in computer
science; building machines is not enough. It has been recognized for
several years that the design of efficient programs is even more im-
portant than the design of machines.

Third, the computerization of many applications involves large
sums of money, so that an increase in effectiveness of even, say, five
percent can mean a big saving in just two or three yearsan un-
usually rapid payoff for researchgiven that the current annual cost
of the federal government's acquisition and operation of computers
is in the neighborhood of $2 billion.

There is a critical undersupply of leaders in computer science,
which has been described at greater length in Chapter 9. Large sums
of money go into supplying computing machines to universities and
businesses. It is perhaps not widely realized that money for research
in computer science is not provided with anywhere near such gen-
erosity. We note that the Rosser report43 sets forth certain dollar
figures for the support of research in computer science. We feel that
these figures should be regarded as minimal. Because of the great
needs for both research itself and for training for leadership through
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research experience, every effort should be made to support as many
good proposals as possible for research in computer science.

While the contributions of industrial research centers are very
substantial, it appears likely that for the long-term development of
computer science a more academic setting is needed. In many of its
activities, university work will be related to the practical software
activities of manufacturers in much the same way that work in major
engineering schools is presently related to conventional industrial
activity. That is, it will deal with aspects of the subject that have the
greatest generality and permit some degree of conceptualization.

Research problems in computer science vary widely in character.
Many follow the typical pattern of academic research, while a
smaller number, including certain very important problems that
should be tackled in university environments, require a combination
of the academic concern with fundamentals and the industrial ca-
pability for organizing substantial group efforts.

The shortage of trained research and teaching staff for academic
computer sciences, however it may be structured within the uni-
versity, is acute. New, badly needed research people must come from
varied backgrounds, and the opportunities for sponsored research
should include particularly support for young persons of imaginative
and experimental bent. The most acute shortage is for research per-
sons with expert knowledge of systems programming.

We find that industry and nonprofit research laboratories have a
very substantial number of strong research persons in computer sci-
ence, including some of the very best. As a result, a much larger frac-
tion of the key research in computer science is done in industry than
for the other mathematical sciences. The reasons are clear: (1) non-
academic salariLL in these fields, especially for persons just graduat-
ing from a university, have been very much higher than those in
academic institutions; (2) until the establishment of computer-sci-
ence departments, there was little or no recognition of the need for
teaching of the nonnumerical aspects of computer science in uni-
versities; (3) some of the best researchers in the field have not taken
PhD degrees and thus appear less desirable to a university than to
an industrial laboratory.

It is likely that a substantial number of these persons could beattracted to university teaching and research positions, if these posi-tions were made sufficiently desirable. This would impose a severestrain on university salary scales, a strain that will be uncomfortablebut should be faced.
Computing has arrived so fast on the national scene that very



Tasks and Needs 207

little preparation has been made for the organization and financing
of research in computer science, instruction in the field, federal
financing of fellowships and traineeships, and other matters that
have had time to evolve for the older sciences. For this reason it has
not been easy to find the agencies with clear responsibility and
budget for financing research and education in computer science,
though this situation appears to be changing.

Research and education in computer science are substantially
more expensive than for most of the mathematical sciences, mainly
because they involve access to sophisticated computer systems. We
estimate that the over-all annual cost per senior research investi-
gator will be about the same in computer science as in physics,
usually ranging from $35,000 to $160,000, with an average near
$60,000. The situation is complex because, for economy's sake, the
computer systems involved should be integrated with an operating
computer center. (Such a center, appropriate to a large university
or other organization, is likely to have an initial cost of many mil-
lions of dollars.) Moreover, the availability of such computing re-
sources for research and education is usually quite dependent on
fundamental accounting policy decisions of the federal government.
Some of the issues here are outlined in Appendix D.

The funding of urgently needed space for research in computer
science is proving unusually difficult. Money for buildings is always
difficult to find in a university, and building projects often have to
wait several years to acquire enough priority to demand financial
backing. Computer science's very rapid growth makes such delays
exceedingly serious.

OPERATIONS RESEARCH AND MANAGEMENT

SCIENCE

With the aid of the computer, mathematical methods have been
penetrating into every form of human activity. Those that concern
the science of decision-making and its application comprise opera-
tions research or management science. Essentially, mathematical
models are constructed of parts of or sometimes entire industrial and
governmental systems, and computers are used to determine optimal
schedules or plans. In recent years such applications have grown
rapidly. One measure of the practical importance is the cost of com-
puting for linear-programming optimization. This is estimated to
be $5 million per year. Development of new computer programs
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based on established theory runs about $500,000 per new computer
system. It is estimated that industry will require 30,000 trained
workers in management science in the next few years.

Present financial support of management-science education is
geared to only a fraction of this need. Research and training is di-
rected toward analysis of the mathematical structures of typical
systems to be optimized. This has stimulated such mathematical dis-
ciplines as linear, nonlinear, and integer programming; network,
graph, and matroid theory; queueing, stochastic processes, reliabil-
ity theory; dynamic programming and control theory. Graduate
programs have expanded rapidly. An example is the PhD program
in operations research at Stanford, which has grown from zero to 50
gaduate students in the last six years. Graduate programs are pres-
ently limited by the amount of funds available for fellowships, teach-
ing fellowships, and research assistantships. There is a need for
greatly increased support of postdoctoral fellows and at least partial
support of people in industry and in government who wish to
further their knowledge by spending one or two years at a university.
There is need of money for experimentation on computers, par-
ticularly for testing out new proposals for large-scale system op-
timization.

OTHER AREAS

Most of the smaller specialized areas, such as mathematical genetics;
mathematical psychology; transmission, modulation, and coding
theory; and mathematical economics, have been at least reasonably
well supported as parts of the respective fields of application in these
examples: genetics, psychology, engineering, and economics. This
has come about because the value of such -work to the field of appli-
cation has been relatively clear. Since the value of such mathematical
areas usually becomes more rather than less clear, research support
in these areas will probably increase at a substantial rate, as it
should. Moreover, since workers in these areas are usually integrated
into academic departments concerned with the discipline of applica-
tion, a fair number of students with appropriate interests are likely
to come in contact with the fields. Thus, graduate-student recruit-
ment is likely to be fairly satisfactory.

Two problems may prove important in individual areas. Depart-
ments of mathematics may not adequately recognize the need, at
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both undergraduate and graduate levels, for new "service courses"
of a less usual character. (In certain of these fields, calculus, and the
analysis that grows out of it, plays a relatively minor role. Early
training in various areas of "discrete mathematics" may be far more
important.) Proper evaluation of all facets of the ability of fellow-
ship candidates requires special care.

In other such areas, particularly but not exclusively in those at an
early stage of development, other problems may arise. Two seem
worthy of notice here: Mathematics may serve as an unwarranted
sanction for such projects as the writing of a book on "The Mathe-
matics of X" by a man who gives no evidence of being a good mathe-
matician and who has had no real contact with modern work in X.
The converse problem arises when either the mathematics applied or
the problem to which it is applied appears too simple, although real
gain can come from the application. We are fortunate that this was
not the case, for example, in the recent application of mathematical
thinking to the description of all possible kinship systems satisfying
certain axioms, recently carried out independently by both anthro-
pologically and more mathematically oriented workers. Instances
of things appearing too simple are, of course, but specific instances
of work that "falls through the crack" by appearing insufficiently
interesting both to those working in the discipline and to mathe-
maticians.

No simple prescription can be given to meet these problems. Joint
evaluation, of both research projects and fellowship applications, by
mathematicians and by workers in the discipline can be of great
help, but it is vitally important that those from each of these inter-
ests be clearly perceptive of those elements of the other sort of activ-
ity that are least natural in their own sort.

Mechanisms that already exist can be of great help in wisely
channeling support into new areas and interdisciplinary connections,
where intelligent chance-taking is very important for future progress.
The Social Science Research Council has a long history of sparking
and nurturing important developments in all the behavioral sciences
and can be counted on to do well in making selections in all the less
highly exploratory areas. The Mathematical Social Sciences Board,
though in existence for only three years, has already had very great
influence on the rate of progress in the more highly exploratory
areas. Both need increased support in their areas of special com-
petence.

In individual universities and colleges, much can be done if indi-

:

fl'
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vidual departments in any of the frontier mathematical fields are
encouraged to spread a little outside their nominal boundaries, not
only cooperating with workers concerned in various special areas,
but becoming involved in joint research or serving as initial homes,
wholly or in part, for mathematically oriented faculty not as well
housed in their disciplinary departments.

;

I
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The Mathematical Sciences in
Society's Service

For wise policy decisions, the tasks and needs of the mathematical
sciences, discussed in the previous chapter, must be viewed in proper

context. A major element of this context is the whole process by

which the mathematical sciences contribute to society's ends. To
understand this in full detail would be extremely difficultprobably
impossiblebut a general overview can be given in reasonable space

and with some clarity.

THE MATHEMATICAL POPULATION

The most significant fact about the people and institutions that
employ the mathematical sciences, at one level or another, in our
society is their number and diversity. Exact figures on the number of

our people who have had at least two years of high school mathe-

matics might be hard to find. Rough but probably adequate estima-
tion leads to a figure of perhaps one fourth of the nation's adult
population.* With the increasing complexity of society's mech-
anisms, institutions, and interrelations, leading inevitably to greater

public education, this fraction is in the process of slowly moving

* According to reference 44, 47.7 percent of the U.S. population over 14 years of

age has completed four years of high school and 70.5 percent has completed one

through three years of high school. Also, 17.6 percent has completed one through

three years of college and 8.1 percent of the population over 14 years of age

comprises college graduates.

211



212 Conclusions

upward. It may well reach one third, one half, and even two thirds
as the years pass.

A fundamental education in mathematics extends through high
school and about two years of college. Perhaps 8 to 10 million of our
people have this foundation, which required 9 to 11 years of study
of mathematics. Not all these people make regular use of what they
have learned, but a large fraction of those engaged in physical sci-
ence and engineering do. Altogether, the number who use 11 to 13
years of mathematics, at least occasionally, probably runs between
1 and 2 million.

Now we look at those who work in mathematical sciences in some
way or another. The two largest groups are somewhat over 100,000
high school teachers of mathematics and 200,000 computer pro-
grammers, to which we should add the roughly 50,000 members of
professional societies dealing with mathematical research, college
teaching of mathematics, statistics, computer science, operations re-
search, and management scienceall told, approximately 350,000
to 400,000 people.

Another group that needs specific notice includes many workers
in agricultural, biological, and medical research, many conceined
with production or marketing in industry, most research psycholo-
gists, and many workers in other fields of behavioral sciences. Some
50,000 to 100,000 such people use statistical methods in their pro-
fessional work. Many look actively to research in statistical method-
ology to provide better tools for their use.

Finally, toward the tip of the pyramid there are about 7,000 PhD's
in the mathematical sciences, amolig whom over 1,000 are active
innovators. This relatively small group bears the responsibility for
practically all research in mathematical sciences, for all research
education, and for directing much of the college-level education.

The fraction of our population contained in any of these groups
can confidently be expected to increase. Society's increasing com-
plexity and the increasing complexity of its individual mechanisms
and institutions will assure this. To estimate the rates of increase,
however, is exceedingly difficult, and the figures we now give are
only a very rough guess. It seems that the number of people with
two years of high school mathematics increases at about 4 percent a
year. The pool of those with two or more years of college mathe-
matics grows perhaps 8 percent a yearsomewhat more rapidly
while pools of those who use college mathematics may grow as much
as 12 percent a year. The numbers of those who use mathematical
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science as a main professional component grow at diverse annual
rates: high school teachers of mathematics at perhaps 5 percent,
computer programmers at a rousing 30 percent, professionals at
perhaps 14 percent, overall at, say, something over 10 percent. The
annual rate of increase of new PhD's over recent years has been 18
percent; as already stated, we believe that active investigators are
increasing at about the same percentage per year.

The greater rates of increase at the upper layers of the pyramid
are inevitable consequences of the increasing subtlety and complex-
ity of society's demands. An 18 percent annual increase at the re-
search level is no more than would be expected from the other parts
of the picture.

We cannot be sure whether the recent rates of growth will or will
not continue for the near future. The rate of educating scientifi-
cally trained people in each specialty is controlled by students'
choices and available facilities. These factors are constantly chang-
ing. Over the post-Sputnik decade, enrollments in advanced under-
graduate courses in mathematical science grew rapidly, but with a
possible tendency to flatten out.* This apparent flattening out may
be a short-time fluctuation, may represent limited facilities in terms
of faculty, may reflect the absence of undergraduate programs in
applied fields, or may be due to a partial reorientation of student
values from technical and scientific to social concerns.

Graduate enrollments in mathematical science, particularly at
research-training levels, are still growing actively, but their future
behavior is equally uncertain. If research training in mathematical
science continues to expand rapidly, it will be either because of a
continuing atmosphere of general public approval or because we
shall have opened the way to graduate work to a wider variety of
students by removing social obstacles, by establishing a greater di-
versity in undergraduate programs, or by broadening understanding
and knowledge of mathematical sciences among all college teachers
of mathematics. All these reasons for continuing growth are signifi-
cant and appropriate. If they produce a continuing expansion, the
nation has important tasks for all those who will receive research
training as a consequence.

At the same period the engineering numbers flattened out, physics showed
moderately strong increases followed by flattening, geology suffered a severe de-
cline followed by a partial recovery, and biology grew, first moderately then more
rapidly.

1

i
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MATHEMATICAL STRATEGY

To assess the significance of research in mathematical sciences from
the national point of view, it is important to remember that, as
already described in Chapter 3, the strateca of research in mathe-
matics is rather different from that in other sciences.

In nuclear or high-energy physics, for instance, a few problem
areas are regarded as crucial at any given time. These are confronted
in great force by many people. Substantial numbers of groups of
reasonable size, each necessarily well supported by machines of
various kinds, attack the same problem. This strategy has brought
rapid progress to these areas of physics, probably in part because of
the relative narrowness of their research objectives. Even physics in
general aims at understanding only one universe, under only one
system of laws.

Mathematical research, seen from society's perspective, has a
broader objective: the full development of concepts, results, and
methods of symbolic reasoning that will apply to as many as pos-
sible of mankind's diverse problems, includingvitally but far
from exclusivelythe problems arising from the progress of physics.
The development of concepts and theories motivated by the needs
of mathematics itself must be part of this objective since experience
shows that these may well become crucially important for applica-
tions. As a result, mathematics must contribute to understanding
diverse situations under widely different systems of laws.

Mathematical sciences must eventually travel many roads. All
past experience, from the dawn of history to recent times, teaches
us that the ultimate applicability of a mathematical concept or
technique can hardly ever be predicted, that only quite short-range
forecasts can be trusted, and that calls for massive effort at one point,
at the expense of efforts at other points, should usually be resisted.

In this situation, mathematical sciences proceed by a large num-
ber of small independent research efforts, often conducted by single
individuals or by small groups of men. A large variety of problems
is attacked simultaneously. The choice of problems to work on, as
in all sciences, is one of the things that determines the success or
failure of an investigator. But the mathematician and the mathe-
matical scientist have, and need, great freedom in making these
choices.

This strategy has proved successful. It involves dispersal of forces
and active work in many seemingly disconnected fields. Thus there
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have been repeated periods of apparent overspecialization when
mathematicians seemed to be drawing too far from one another
(most recently in the 1930's and 1940's). Every time this has hap-
pened, however, an apparently inherent unity of mathematics has
shown itself again through the appearance of new and more gen-
eral concepts and approaches that, as in the present decade, have
restored to mathematics much more in the way of unity than had
seemed possible a few decades earlier.

TRANSFER TIMES

When the British steel industry was renationalized in 1967, the new
chairman warned the British people not to expect too much too
soon, saying that, in a "capital-intensive" industry, only slow change
could be expected. Our nation's system of mathematical service is
an institution in which change must be even slower. Indeed, this is
a "training-intensive" institution; its greatest investment is in
people with years of training. The building of steel plants can be
greatly accelerated, but no large group of people can be given 10,
or 15, or even 20 years of continuous training in appreciably less
than that number of years.

As a language, used for communication both with others and
with oneself, mathematics shares with the language of words the
need for a long and arduous apprenticeship. Including mathemati-
cal training in elementary and secondary school, a college graduate
majoring in mathematics has typically studied mathematics about
three times as long as a college graduate majoring in a science has
studied his or her science. The proper time scale for thinking about
our society's system of mathematical science is not merely long, as
it must be for all the sciences, but very long.

From society's viewpoint, the largest reason for supporting self-
motivated research in mathematical sciences is the continuing im-
pact of the resulting innovations, first as immediate mathematical
applications and then more broadly. How fast ought society to ex-
pect the results of innovation to be transferred? Surely not in a day
or a week or a month. But in one year, or three, or ten?

We have stressed the differences between the strategy of most
mathematical research and that of the other sciences and tech-
nologies. The individual character of the work and the difficulties
of forecasting where progress will prove most important have led to
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a spreading out of attention over a wide variety of problems. (Im-

portant mathematical problems, like many of those posed by David
Hilbert in a celebrated 1900 address, are often under attack for
several decades before their final solution.) As a consequence of its
implicit strategy of pressing ahead wherever it seems that reasonably
valuable ground can be gained, mathematical science sometimes
prepares the way very far in advance. That important uses should
follow discovery by decades, often by several decades, should neither
be a cause for surprise nor a reason for criticism. It is a state of
affairs intrinsic in an efficient use of human resources and the
facilities and money that support them.

A bare trace of our progress in inner-directed research will come

to use in one year. A little more will come in three years. A sub-
stantial fraction of what will contribute outside mathematical sci-
ences will have begun to make its contribution in 10 years, but
only a substantial fraction and only as a beginning. We will do well

to do whatever we reasonably can to speed up the process of transfer

to use, for there are real gains to be had if we can, but we dare not
delude ourselves that great gains in speed can be had by some
drastic rearrangement of activity and interest.

The mathematical strategy of widespread attack in small parties
is well adapted to both the subject and the demands for innovation
laid upon it by the diverse needs of society: long delays in transfer
to use are an inevitable consequence of this strategy. In planning
support of mathematical sciences, especially support of inner-
directed research, we must take the long view if our programs are to
contribute to the demands that society will make at times spread
through the future.

We do many other things today with a hope of social gain over
decades. The elementary and high school education of youth is to
be of value to them and to society, not just for a decade or two, but
for four or five or even six decades. All our affairs cannot be con-
ducted in the way a field of corn is tended, plowed under this year
but reseeded for next year. Innovation in science is more like an
apple tree; 10 to 25 years are needed for the crop to return, many-
fold, the effort of planting, grafting, and cultivation. Mathematical
sciences call for time scales even longer than do other sciences.
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EMERGENCIES

There is an exception to the usual need for long transfer times
typical in the mathematical sciencesthe use of creative mathe-
maticians during emergencies.

World War II generated many technical emergencies. Mathe-
maticians usually involved in innendirected research responded to
many calls: how to conduct antisubmarine warfare, what principles
to use in fighter and bomber gunsights, and many questions in
ballistics, radar, atomic weapons, and cryptography. The crisis was
clear; insight, knowledge, and skill were freely mobilized. Many
concrete problems whose solution was explicitly demanded were
attacked powerfully and effectively by mathematicians, precisely
because of their professional ability and training in thinking into
the heart of a problem and seizing on its essentials. And the free-
wheeling instinct of the self-motivated researcher played its part.

Another emergency arose slowly and imperceptibly in mathemati-
cal education, primarily in elementary schols and high schools. The
urgent need for reform became apparent about 15 years ago. Leader-
ship in meeting this emergency came in a large measure from uni-
versity and college mathematicians active in inner-directed research.
(There are various opinions in the mathematical community about
the success of the reform movement thus far; there is no dispute
about the necessity of curriculum reform.) When the next major
change in mathematical education comes, leadership will again
have to be drawn from those concerned with inner-directed research.

Mathematical scientists who give most of their time to inner-
directed research are an important national resource in emergencies.
This sort of resource serves special purposes in an emergency, but
it cannot be used for these purposes steadily. This type of value has
to be a by-product. As long as emergencies continue to arise at the
usual rate, society can count on this resource created by basic mathe-
matical research as one sort of return from its investments in re-
search training in mathematical science. It can do this, however,
only by using research-trained people quite differently most of the
time.

THE LEVEL OF INVESTMENT

We are now in a position to ask whether the total investment in
basic mathematical research has been at a reasonable level. Let us
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follow our discussion of Level and Sources of Support (see page 163)
and assume federal support of basic research in the universities as
$35 million in 1966. At an 18 percent rate of growth, the total
through all the past would be about six times as large as the present
annual amount, amounting to $200 million. Allowance for non-
federal support and for slower rates of growth in the past might
raise this to $250 million. If we believe in compound interest, and
insist on totaling up present values of all sums spent in the past,
this figure would be roughly $300 million.

Thus, if we want a total investment picture, we can say that the
whole U.S. investment in research in the mathematical sciences to
date is about as much as we will spend as initial capital investment
on the new super-large "atom-smasher" now approved. When we
look at this investment in mathematical research as contributing in
diverse and important ways to the effectiveness of the whole na-
tional system of mathematical service, where some of these ways
have begun, others are beginning, and others will start at times
spread forward through decades, and where most contributions will
continue for a long time, our investment seems conservative and
cautious, perhaps disproportionately small.

GROWTH CANNOT BE FOREVER

An 18 percent a year increase means doubling every four years. A
10 percent annual increase means doubling in less than 10 years.
Such doubling cannot continue indefinitely. Not only mathematical
science but all science and all technologies with growing research
sectors must face the need for an ultimate tapering off. Neither the
fraction of gross national product that can be devoted to research
nor the number of people potentially capable of becoming research
investigators can increase indefinitely.

At the moment, the need for the innovations of mathematical-
science research is large and growing. These needs would require
continuing rapid expansion for the near future, even without the
necessity of continuing the mathematical teaching of nonprofes-
sionals. But what of the day when tapering off of growth becomes
appropriate? What will be the environment, the pressures, the
appropriate adjustments?

Education above the high school level is in transition. The clas-
sical division between undergraduate and graduate work is more
and more clearly seen to be at an inappropriate place. We may be
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moving toward a three-part scheme of scientific education, consist-
ing of (1) the present freshman and sophomore years, (2) the last
two undergraduate years and graduate study through the compre-
hensive examination, and (3) thesis research and postdoctoral train-
ing. It will be after this pattern has appeared more clearly that we
shall have to face declining rates of increase in supported research.

At present, five sixths of new PhD's follow career patterns that do
not lead to federally supported research. If our needs for profes-
sionally trained personnel were to cease to rise, adjustments would
be fairly simple. If, as seems more likely, the future demand for
professionally trained personnel increases much more than in pro-
portion to the amount of sponsored research that the nation can
afford, there will have to be major readjustments.

Direct contact with research leadership contributes greatly to
education in mathematical sciences below the research level. In the
future, research leaders may not be able to contribute much time
to this activity. Once this situation arises, forms of mass communi-
cation, both television and film, will become important in the
process, and there will have to be real innovations designed to pro-
vide face-to-face contact with many students.

Inevitably, the selection of a principal investigator for research
support will focus increasingly on the number and quality of his
PhD candidates, as well as on the number and quality of his own
contributions. As a consequence, it will become clearer that academic
tenure exists primarily for teaching rather than for research sup-
port.

Such times, when they come to each science, will be times of
change indeed. There are many reasons, however, why they will
not come to all sciences together. The bigger the initial budget, the
sooner its doubling will bring it to a point where things must be
done. The larger the system of activities that research in a science
supports, the larger the total the nation can wisely spend on it.

Today, academic mathematical research receives a relatively
small amount of supportless than three cents out of every dollar
spent by the federal government for research at universities. Yet this
mathematical research is the leading wedge of a very large national
effort. Thus, reduction of growth rate in mathematical research
ought, wisely and advisedly, to take place only after similar reduc-
tions have been made in many other fields. Thus the mathematical
sciences can expect much guidance by the time they are faced with
making their own adjustments.
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THE NONUTILITARIAN VIEW

Our report would put the research activities of mathematical science
in distorted context if it were to give the impression that all society's
demands on mathematical science are utilitariana vivid untruth.

As many nonmathematicians know, the central constructions of
mathematics are among the noblest creations of the human spirit.
For millennia this has been true of mathematics as well as of poetry
and music.

Were there no demands for the ultimately useful, society would
not choose to be wholly without mathematics. It would continue
to value mathematics for intellectual strength and beauty. The
appeal that mathematics has for its practitioners, in particular for
research mathematicians, is largely aesthetic. The joy experienced
in learning and in creating mathematics is akin to that associated
with art and poetry. This joy, however, can be shared only by
relatively few people and requires an apprenticeship. Still, the num-
ber of people able to enjoy mathematics is rapidly growing, as
shown by the unexpectedly large sales of popular books on mathe-
matics. Society would hardly support, on grounds of intellectual
achievement and appeal alone, the volume of research in the mathe-
matical sciences appropriate to its other ends; but society would
always find ways to keep this intellectual activity alive.
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Final Report of the American Mathematical
Society's Committee on Information Exchange and
Publication in Mathematics*

I. The original charge to this committee was to ask the right
questions about communications in mathematics, questions whose
answers would provide the information necessary for deciding on
future action by mathematics organizations. There was some indica-
tion that if such questions could be pinpointed, then the NSF might
be willing to help in getting the answers. It turned out that the
concrete implementation of this would probably mean conducting
a large survey of mathematicians, mainly in the form of question-
naires. It turned out further that the NSF was not in a position to
offer any help except to comment on professional survey organiza-
tions which might be able to conduct such a survey.

After considering tviis matter for many months, and after informal
contact with two of the most reputable academic-type survey organ-
izations (The Survey Research Center at the University of Chicago,
for one), we concluded that a large survey would be a waste of energy
and would provide much more irritation to the mathematicians
questioned than it would provide sound information to the ques-
tioners. Such a survey could, at most, tell what is happening now,
but it is more likely to tell what people think is happening now; the
results of such a survey are too easily rigged by the selection of the
questions or the persons questioned; in short, the survey idea seemed
a poor basis for future action. Furthermore, there have been numer-
ous studies of information exchange in various sciences in recent
years [see The Flow of (Behavioral) Science InformationA Review

* Reproduced by permission.

233



234 Appendixes

of the Research Library, by William J. Paisley, Institute for Com-
munication Research, Stanford University, November 1965, which
lists at least 29 studies between 1948 and 1965] and all these studies
seem to come to much the same conclusions as we would have pre-
dicted on the basis of "pure thought." The proposal to abandon the
idea of a survey seems to have met with the approval of all parties
involved in setting up the original charge to this committee.

We therefore recommend that the American Mathematical
Society set up a permanent committee to monitor problems of com-
munication; that this committee should experiment with pilot
projects in (hopefully) improved modes of communication if such
projects are approved by the AMS and other societies concerned; and
that the results of these experiments be carefully assessed after a
suitable trial period. This committee should have some members
representing the more applied areas of mathematics and it should
work in close liaison with the other mathematical organizations,
including CBMS. We have spelled out below some of the relevant
areas and some projects we think could be followed up immediately.
Specifically, we feel that the Information Center described in Part
II, the repository in Part III, and the Proposal for Writing Panels
in Applied Mathematics in Part V are especially worthy of present
attention.

IL Prepublication services. The present methods of journal publi-
cation are threatening to become unmanageable as th e. number of
journals and the number of papers increases. The years 1950-1965
have already seen an increase of about 250 percent in the number
of pages and the number of papers published. Judging from the
numbers of new PhD's in mathematics, this rate of growth is not
likely to decrease. Our committee did not feel that making these
results available with great speed was of primary importance. Our
present time lag in publication of from one to two years is much
too long, but decreasing this is not a primary problem. Suggestions
for avoiding the avalanche which seems to be coming should aim
to make any one piece of research more readily visible to those who
need it, and to make it easily accessible. After all, each mathe-
matician has only a finite amount of time and energy to devote to
learning new results and it is most important to help him use this
time effectively.

It is standard practice now to communicate results of research
before publica tion. Many organizations have tried to formalize
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this system of preprints. The National Institutes of Health organ-
ized nine Information Exchange Groups in various aspects of
biology; each group consisted of from 100 to 1500 research person-
nel, each of whom automatically received all preprints submitted
by other members of his group. Thes groups have recently been
discontinued by the NIH, though they hope other organizations will
continue the system [see Science, 154, 843 (18 November 1966)].
One of the American Chemical Society's applied journals, Indus-
trial and Engineering Chemistry, has been publishing 50-word ab-
stracts of all papers being refereed and will sell copies of the manu-
scripts to anyone who is interested. The AMS has considered
publishing lists of titles oi all forthcoming papers. The Category
Information Centre has recently been organized to distribute infor-
mation on the whereabouts of mathematicians interested in category
theory, and on the results they prove. The actual functioning of
this organization is not yet clear to us.

Our committee suggests that such semiformal prepublication
communication is worthwhile and should be encouraged. It is prob-
ably better to have some organization handling preprints than to
depend on each author's private distribution lists as at present. It
is not clear what encouragement the Category Information Centre
(centered in Prague) would desire, but similar centers might be
organized in one or more other fields of mathematics, for example,
in numerical solutions of partial differential equations, or in
differential topology, or in operator theory (Hilbert space), or in
set theory. Such a center might be restricted to distributing biblio-
graphical information or it might actually sell copies of manu-
scripts which are submitted to it. We doubt that the automatic
distribution (as in NIH'S IEG'S) is worthwhile for papers which have
not yet been refereed. It is also important to be sure that all this
transitory material eventually disappears. Correct bibliographical
references should be made available to all participants when a pre-
print is published. The experience of Industrial and Engineering
Chemist'', is that distributing copies of the manuscript is rather
expensive, but it is conceivable that it could be automated if the
demand were great enough. If such centers are set up, they will have
to be reviewed periodically in some objective way to see if they are,
in fact, improving the communication among mathematicians.

III. Modes of publication. Publication of research articles will
probably have to be changed in some manner or other eventually.
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Our committee kept returning to the suggestion that some journal,
for example the Bulletin or the Proceedings of the American Mathe-
matical Society, be devoted exclusively to publication of two-page
abstracts of papers, after these abstracts have been refereed by a
competent mathematician who has access to the full text of the
manuscript. Some central repository would collect these manuscripts.
Any interested mathematician could receive a copy of the full manu-
script by requesting it from this repository. It should be made
extremely easy to submit such requests. In fact, eventually this
might be done by punching a few buttons on an electronic console
which will then produce a hard copy of the manuscript a few
minutes later. However, at present the mails are probably still
adequate. For example, as a privilege of his subscription, a mathe-
matician might receive a number of coupons which could be torn
off and mailed to the repository, thereby automatically requesting
a specific article. Publication of such an abstract would count as
publication, since the paper is refereed and available in full to
interested readers with reasonable ease. To implement such a
scheme, it would be important to raise standards of publication in
all other journals. This might be easier than merely raising stan-
dards a little bit. More journals could then devote much space to
survey articles at a very high level, supplementing the present
activities of the Bulletin.

Aside from provision for such survey articles, the American
Mathematical Society could drastically cut the page allotments in
its present journals and might well enlist the cooperation of most
other American journals. If this results in a major overflow into
foreign journals, they might also be tempted to join in such a
program of publication by abstract. Presumably both the by-title
abstracts in the Notices and the research announcements in the
Bulletin could then be eliminated; perhaps all the abstracts could
go.

This is an ambitious scheme, but with support from the NSF to
help temporarily in the reproduction and distribution costs, it
might even work for a long enough time to determine whether it
could serve the needs of mathematics.

On a smaller scale, the MAA is toying with the idea of changing
the Monthly in part to a collection of abstracts. Cooperation and
observation here might also be in order.

An alternative to this repository scheme is the publication of a
journal of abstracts with the total manuscript reduced to micro-
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fiche possibly even accompanying the journal. The Mathematics of
Computation is now considering a microfiche supplement to their
journal which might include the texts of tables reviewed in the
journal or other extensions of the printed text. It would be inter-
esting to cooperate in this experiment and assess the results after
about two years.

IV. Retrieval. We should take advantage of experiments in infor-
mation retrieval now being tried in mathematics and other dis-
ciplines and assess their relevance and value to mathematics as a
whole. Among such experiments we should list the following:

1. Citation Index. This associates to each published paper all
the subsequent papers which refer to it in their bibliographies.
Such a citation index is being constructed at UCLA for current
mathematics and another is being constructed by Tukey and others
for past and present probability and statistics.

2. Permuted Index. This type of index is most easily described
by the sample page (shown in Figure B1) from an index of the
approximately 1500 papers appearing in the Transactions of the
American Mathematical Society from Volume 86 (1956) to Volume
104 (1962). The left-hand column gives the date and a code for the
author's name (this code is translated in a separate index). The
second and third columns are the standard volume and page refer-
ences, and the rest consists of titles arranged alphabetically accord-
ing to one word of the title. Apparently each title is indexed under
each word in it except for prepositions and conjunctions. The
Permuted Index for zhe Transactions, including a chronological
list of papers and the author index is a pile of standard nym sheets
about 3/8 inch thick (if you don't squeeze too hard). Apparently the
Association for Computing Machinery publishes such a permuted
index to Computing Reviews at about three-year intervals. Pre-
sumably Aaron Feineman at Stony Brook knows most about its
effectiveness.

3. The MAC Technical Information project at MIT includes a
combination of Permuted Index and a Citation Index stored in a
computer so that the retrieval of the information (title, author or
citation) is done by machine.

4. Mathematical Reviews subject index.
5. The volume of reviews in differential topology which the

AMS is now preparing under the direction of Steenrod.

1
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6. Special Classification. This would index published papers not
only according to title, but according to specified aspects of their
contents. For example, Dorothy Bernstein, presently at Brown,
maintains an index on partial differential equations which lists for
each review of a paper on partial differential equations the order,
number of unknowns, number of independent variables, type
(elliptical, hyperbolic, linear, etc.), and type of problem (Cauchy,
Dirichlet, etc.).

This kind of index, as well as a Permuted Index might be a
by-product of the automation of record keeping in Mathematical
Reviews.

All such indexes should preferably be available in machine-
readable form.

V. The problem of communication between mathematics and
other fields is deserving of more effort than it now receives. There
are already special meetings on applied mathematics and applica-
tions of mathematics. These meetings should be expanded and
their existence should be better publicized among the users of
mathematics. Next summer's meeting at Seattle on Relative Differ-
ential Geometry, Generalized Abelian Integrals, etc., is one sample.
Another is a meeting that will take place at Lsu this spring on
C*-Algebras. About one third of the people attending this confer-
ence are expected to be physicists. The AMS conferences on applied
mathematics are more examples. It probably would be wise to en-
courage such meetings not only in mathematical physics, but in
mathematical economics and other applications.

A second channel for communicating mathematics to researchers
in other fields is the writing of expository articles or expository
texts. Such expository writing must be done at a level which is
sufficiently unspecialized that it can be read by nonmathematicians.
This might well have a corollary advantage of producing texts
which will be of use to graduate students. We propose that the
president of the AMS appoint a new committee to locate areas of
mathematics which would be of maximum use to physicists (e.g.,
Lie groups), and to organize a writing panel of mathematicians and
physicists to produce suitable expository material in this area. In
the above scntence "physics" and "physicists" can, be changed to
"economics" and "economists" or to other disciplines at the dis-
cretion of the committee.
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VI. More expository books are in order inside mathematics. These
probably can be successfully commissioned and should be valuable
to mathematicians in fields adjacent to that of the book, as well as
to graduate students.

VII. In mathematics it seems clear that face-to-face communica-
tion is at least as important as any other one kind. A large amount
of mathematical research typically is done by discussion among a
small group of mathematicians of some tentative ideas proposed by
one or more members of the group. Such a small group has much
more knowledge of relevant results which have been recently proved
than any one researcher working alone. Therefore, we commend the
great efforts expended by various mathematical organizations in
organizing meetings of all kinds, and we commend the government
agencies which have made possible travel to such meetings and to
smaller conferences. Up to now, the mathematical community has
not taken kindly to the telephone as a substitute for personal meet-
ings and it seems unlikely that adding a visual component to the
telephone will make it much more acceptable.

In this context, too, some experimentation is in order. For ex-
ample:

1. Devote half of some national meeting to a more closely
planned, more detailed set of lectures; for example, a series of lec-
tures whose texts are available beforehand, with discussion con-
ducted by formally appointed persons who are acquainted with the
text.

2. Schedule discussion-only sessions where papers are submitted
and abstracts included in the program. The author would be avail-
able in a room for "argument." Several related papers could be
scheduled in the same room with a discussion leader to chair the
program. This is a possible substitute for 10-minute papers. It has
been tried by the American Federation of Information Processing
Societies.

3. Schedule a lecture on an important published paper by an
expert in the field, not the author of the paper (in the style of the
Fields Medal lecture at the International Congress).

4. Run a more extensive program in connection with the
20-minute invited papers. For example, there is to be a special ses-
sion of 20-minute papers on Entire Functions at the Houston meet-
ing. This will constitute a public presentation of some of the

i
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reports and lectures given at the 1966 Summer Institute on Entire
Functions. Furthermore, a second session on Entire Functions is
being considered for the Houston meeting which would consist of
a panel discussion with audience participation.

5. A meeting could include a set of lectures at a more expository
level than present AMS lectures; for example, make them accessible
to reasonably qualified graduate students. These lectures might be
filmed or taped and distributed.

Small, specialized meetings seem to be very successful; more of
them are being proposed (by cBms) . Perhaps the various kinds
should be compared: summer-long teaching-and-research-microcosms
(cf. Bowdoin) versus Gordon Conference types one or two weeks
long; conferences which publish their proceedings versus those
which do not, etc.

Are visiting lecturer programs worthwhile? CUPM and SIAM have
some experience in this connection.

VIII. To repeat, each of the preceding suggestions, if carried out,
should be assessed after a suitable trial period. This assessment
could be arrived at by a consensus (for example, no one doubts the
great usefulness of small, select meetings suitably managed). How-
ever, for experiments with large meetings or with modes of publi-
cation some kind of formal survey will probably be in order. For
example, tampering with sessions for 10-minute papers always
brings an outcry at the Ams business meeting. Is this a real ground
swell? A professional survey organization should be seriously con-
sidered for help in such matters, both in phrasing the questions to
be asked and in evaluating the significance of the answers.

In any surveys that may be conducted, it will be important to
tabulate separately the responses of different groups of mathe-
maticians; for example, innovations should not be initiated on the
basis of majority votes. For example, the following classes might be
expected to respond in different ways.

1 A small group of first-rank mathematicians (to be selected by
the committee, for example)

2. Productive mathematicians (five papers in the last five years,
for example)

3. Mathematicians who are unproductive but not isolated
4. Mathematicians who are unproductive and isolated
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5. Mathematicians in government and industry (should research
labs be classed with universities?)

6. Physicists, economists, and other users of mathematics, produc-
tive in the sense of 2.

7. Editors or past editors of research journals and of technical
series of advanced treatises

For some purposes it may also be desirable to classify mathe-
maticians according to their field of interest. For example, it is pos-
sible that applied mathematics may have di fferent needs, All this
classification might best be done in advance of a survey, using
Mathematical Reviews and other sources, rather than allowing each
participant in the survey to classify himself.

TX. Finally, a bit of philosophy. We feel that our aim should be
to channel the large masses of communication, not to limit them.
Papers, lectures, etc. should be more carefully titled, abstracts should
be used more and should be carefully written. This is pardy a call
for education of mathematicians in some of the simpler devices that
can help buffer the avalanche.

We do not propose that the number of published papers should
be restricted, because even if it can be demonstrated that the aver-
age paper has almost no readers, the writing, refereeing and publish-
ing of the paper is of great value to the author. Besides making him
visible to the mathematical community, presentation of his paper
(in person or in print) exerts a certain influence that matures a
fledgling mathematician (no research is complete until it is written
down) and keeps older mathematicians alive; this seems to have
some enlivening effect on the author's teaching and in his par-
ticipation in other mathematical activities.

X. The present committee requests that it be discharged.

P. R. Halmos
Albert Madansky
Alex Rosenberg
J. Barkley Rosser
J. D. Swift
J. F. Traub
A. S. Wightman
D. Zelinsky, Chairman
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The Role of the Private Foundations in the Support
of Mathematics

A Report by L. H. Farinholt to the COSRIMS
Panel on Level and Forms of Support

GENERAL STATEMENT ABOUT FOUNDATIONS

In their support of mathematics as in their other grants, philan-
thropic foundations have consciously tried to stimulate new activ-
ities in preference to sustaining existing ones. 'Their general policy
has been to provide the "seed money" which enables new enter-
prises to put down roots; once a "seedling" has proved its viability,
the supporting foundation normally expects it to find sustenance
elsewherefrom its parent institution, from public funds, and in
some cases from industry. The "venture capital" which foundations
provide is thus freed for work in other areas of need.

If, after a reasonable period of foundation nurture, the seedling
shows no positive signs of becoming self-sustaining, the foundation
usually will arrange to phase out its support and move on to more
promising ventures. This risk of failure is inherent in most of the
grants foundations make; in practice, a foundation naturally will
try to assure itself in advance that the new enterprise has a reason-
able chance of success.

Because foundations try to be creative rather than imitative in
their grants, they take considerable pains not to become involved
in programs that simply duplicate what is already being done with
the support of government or other large benefactors. In this era
of expanding federal support of science and education, it is no small
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matter to remain abreast of burgeoning new federal programs, to
say nothing of remaining ahead of them. But it appears unlikely
that foundations will run out of things to do as long as they retain
knowledgeable staff people and preserve their inherent flexibility in
meeting new problems.

WHAT FOUNDATIONS HAVE DONE FOR MATHEMATICS

No private foundation has a separate division or program labeled
"Mathematics." For reasons which the Committee will appreciate,
the support of mathematics as a major undertaking has not been
overwhelmingly attractive to even the most sophisticated of the large
foundations. Warren Weaver has written: "The great private
philanthropies have for the most part been rather cold to mathe-
matics."*

Where mathematics has entered into foundation grants, it has
usually appeared in projects to strengthen research and teaching in
the sciences generally or to strengthen the scientific and technologi-
cal capabilities of specific institutions. Mathematics also figures in
grants where it is secondary to some other purpose, such as the con-
struction of economic models or the mathematical analysis of
medieval musir..

For these reasons, any description of foundation grants "for
mathematics" must be somewhat arbitrary and tentative. It must
include grants that benefit "pure" mathematics, and it must not
exclude those for applied mathematics; but it would seem reason-
able to attempt to screen ou t those grants wherein mathematics is
merely the tool of some other discipline. The standard adopted in
this report (at Dr. Weaver's suggestion) is the inclusion of grants
for work "by mathematicians in a mathematical setting." The time
span covered is from the beginning of 1955 to 1966.

The total of grants for mathematics by the seven private founda-
tions most directly interested in the discipline has been approxi-
mately $19,247,000 over the past 11 years. The Alfred P. Sloan
Foundation has been responsible for over $10 million of this
amount, the Ford Foundation and the Carnegie Corporation have
each given more than $3 million, and the Rockefeller Foundation
has contributed over $1 million. A more detailed description of each
foundation's activities follows:
* W.7,.rren Weaver, Mathematics and Philanthropy, Alfred P. Sloan Foundation,
1965, p. 27.
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Alfred P. Sloan Foundation ($10,422,078)

The Sloan Foundation's largest single contribution to mathematics
has been its grants totaling $3,093,500 to the Courant Institute of
Mathematical Sciences of New York University. Of this amount,
$793,500 was a contribution to the program of the Institute and
$2,300,000 was used in the construction of a new building which was

named Warren Weaver Hall.
Other large grants were $1,265,700 for a laboratory of mathematics

and physics at the California Institute of Technology; $1,000,000 for

a mathematics center at Stanford University; and $500,000 for a
mathematics center at Dartmouth College.

Grants to improve the teaching of mathematics have included
$135,000 to Syracuse University for a project to upgrade selected
high school teachers of mathematics, and contributions totaling
$65,000 were made to the Mathematical Association of America in
partial support of two summer institutes for college mathematics
teachers. A grant of 560,000 helped the American Mathematical So-
ciety in moving its headquarters.

The foundation's Program for Basic Research in the Physical
Sciences provides unrestrictive two-year research grants, with occa-

sional renewals, to young faculty mathematicians, physicists, and
chemists who show unusual promise. Under this program, since
its inception in 1955, grants totaling $2,345,378 have been made to

support the researches of 116 individual mathematicians.
The Sloan Foundation's support of mathematics continued un-

abated in 1965 and early 1966. A grant of $1,000,000 was made to
Cornell University to help establish a new Department of Computer
Science cutting across the bounda:ies of several Cornell colleges and
professional schools. Brown University received $500,000 to help
create stronger ties between mathematics and applied mathematics
by strengthening faculties and facilities. A grant of $250,000 was
made to help inaugurate a program in biomathematics at Sloan-
Kettering Institute for Cancer Research and Cornell Medical
College.

In the interest of mathematics education, the Sloan Foundation
granted $100,000 to the Pacific Science Center Foundation to help
establish a Regional Learning Center in Mathematics. A grant of
$10,000 to the University of Cambridge, England, is supporting re-
searches in the history of mathematics by Dr. Derek T. Whiteside.
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Other grants by the Sloan Foundation have supported mathe-
matics indirectly through the strengthening of certain engineering
schools and of "science and mathematics" instruction in other col-
leges. Two large Funds for Basic Research in the Physical Sciences,
one of $15,000,000 at Massachusetts Institute of Technology and
another of $5,000,000 at California Institute of Technology, support
some research work by mathematicians at those institutions. No
effort has been made to include this indirect support in the Sloan
Foundation's totals.

Ford Foundation ($3,326,000)

From 1958 to 1966, the Ford Foundation made twelve grants totaling
$3,326,000 for mathematics, of which $1,000,000 was a contribution
tu the Courant Institute. Nearly all the rest was in support of educa-
tioaal projects such as curriculum improvement, development of
new teaching materials, and seminars for grade school and high
school mathematics teachers. The most recent grant, made in Decem-
ber 1965, was $155,000 to the Conference Board of the Mathematical
Sciences, for a survey of the teaching and use of the mathematical
sciences in the United States, in coordination with a related survey
sponsored by the National Academy of Sciences.

Carnegie Corporation of New York ($3,181,000)

This foundation's interest also has been primarily in educational
projects. In recent years, the Carnegie Corporation has granted
$500,000 to Educational Services, Inc., for development of supple-
mentary teaching materials in English and mathematics; $200,000
for the teaching of mathematics for engineering technicians in Mil-
waukee vocational and adult schools; $250,000 for curriculum-revi-
sion work at Webster College's Institute of Mathematics and
Science; and $176,000 for the Mathematics Learning Center of the
Pacific Science Center Foundation.

Rockefeller Foundation ($1,160,000)

Grants by the Rockefeller Foundation in mathematics have been
made for educational purposes such as summer institutes for teachers
and for larger projects which included mathematics. Among some
forty-two grants thus involving mathematics, the figure of $1,160,000
is estimated to have gone for mathematics as such.
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Louis W. and Maud Hill Family Foundation ($590,464)

This foundation in St. Paul, Minnesota, lists 29 grants since 1955
for projects in mathematics education, nearly all in the upper Mid-
west. It has supported experimental programs for gifted public
school students, summer institutes for students and teachers, use of
computers in colleges and universities, and comparative studies of
mathematics education in this country and abroad.

John Simon Guggenheim Foundation ($356,000)

This foundation has awarded 82 fellowships totaling $356,000 to
mathematicians in the past 11 years. Eight fellowships totaling
$56,000 (included in the total) were granted to mathematicians in
the past year.

Research Corporation ($211,500)

The Research Corporation since 1946 (a departure from the time
span applied to other foundations in this report) has distributed
$127,500 in grants to strengthen college mathematics departments;
$16,000 in project grants; $28,000 for the Summer Research Institute
of the Canadian Mathematical Congress, 1954-1956; $30,000 for a
summer seminar of the Mathematical Association of America in
1964; and $10,000 to two mathematicians in its annual Research
Corporation Award for 1963.

THE FUTURE OF FOUNDATION SUPPORT

For the future, it seems safe to say that foundations will continue
to look for opportunities to do what other institutions cannot do
or cannot do so well. Government support of science and technology,
which seems to have reached a plateau, will continue to be a major
factor in the thinking of foundations interested in those areas. The
total amount of government support will be perhaps less important
than the way in which it is distributed. Thus, if government support
is to be spread more broadly on a geographical basis, foundations
probably will be called upon to help remedy whatever untoward
effects such a policy may have.

Most foundations, however, will continue to prefer to support
innovative and experimental proposals, soundly conceived, rather
than simply filling in the gaps left by other programs. In this func-
tion they have the advantage of flexibility and of relativebut not
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absolutefreedom from outside pressures. In the crossfire of con-
flicting demands made upon limited foundation resources, mathe-
matics will have to make its case in competition with other and
probably more dramatic appeals for support.

The pursuit of new knowledge has a strong appeal to many
foundations. The problem for mathematics will be to demonstrate
that new mathematical knowledgeand its applicationis directly
relevant to the social concerns that animate foundations.
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The Support of Computer Use in Higher
Education*

A Statement by E. A. Feigenbaum, Director,
Stanford Computation Center

Automatic high-speed computing today [winter 1966] constitutes

one of the nation's most important scientific and economic resources.
Modern science and modern defense systems would be impossible
without computers. Computation differs from other areas of "big
science" in its immeasurably greater impact, now and in the future,
on our social, economic, and educational processes and institutions.
In the context of EastWest competition, especially on national
defense considerations, the state of computer science and technology
was assessed at the White House level under President Kennedy.

Universities have played a major role in the development of this
resource. Their ability to continue to do so is threatened by the
application of certain auditing and accounting standards that in
ordinary circumstances would be considered routine. At present

*The two memoranda included in this appendix were written at Stanford Uni-
versity in January or February 1966, in an attempt to explain a problem posed

by a government auditing policy which greatly restricted the access of Stanford
students to the Computation Center for instructional work. As of October 1967
the problem appears temporarily to be solved at Stanford University on an ex-
perimental basis. However, because the problem still has no permanent solution

at most of our nation's universities, the memoranda are reproduced here as a
statement of the problem. Some possible solutions are discussed elsewhere from

a different point of view (see reference 38 of the main text).
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there is no national policy toward computer education. No federal
government program supports instructional uses of computers at
universities. The standard auditing procedures (as relevant to the
operation of a peanut factory as to a university computer center)
have filled this policy vacuum. The result has been to generate an
absurd situation in which an expensive computer facility sits idle
and cannot be used to compute instructional jobs. The money to
"buy time" to do these jobs is not available, even though the mar-
ginal cost of running the student jobs is virtually zero. To run these
jobs would, literally speaking, not cost anybody anything. The fa-
cility is at present fully funded (primarily by recharges to federal
government grants and contracts). It is the "logical" method of ac-
counting for the time used that produces the absurd result.

What is the story behind this situation? When any growth process
is geometric, the quantities involved grow very large very fast. Com-
puter technologists have been observing and warning for years that
the growth in demand for information processing done with com-
puters has been a geometric growth. The general rule of thumb has
been a doubling every two years. This average growth rate has been
observed at all levels, from the federal government taken as a whole,
down to the level of the small college or small business. Recently the
pace has quickened somewhat, so that the period is now about 16
months. Even the world's largest manufacturer of computers has not
been able to boost its production fast enough to keep up with the
growth of demand. Policy makers and planners find it hard to keep
pace with a geometric growth process, since normally the parameters
of the management process grow slowly and are obviously under con-
trol. Thus the crisis caused by geometric growth sneaks up swiftly.
In computing this has happened to the universities and to the
government.

Consider the Stanford case. In 1953, a small Computation Facility
was established, with a small budget. As demand for computing
grew, the size of the facility grew to meet it, until in 1962 (and none
too early) a Computation Center of the first magnitude was estab-
lished and funded. A vigorous academic Computer Science program
was begun, culminating in the establishment of a Computer Science
Department in 1965 that now had 111 graduate students at the
Master's and PhD degree levels. Vigorous educational efforts by the
Computer Science faculty, and by the faculty of many other depart-
ments, were carried out. The result has been astonishing. It is esti-
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mated that currently one fourth of the Stanford community (faculty
and students) are active computer users. The computer is used in
virtually every phase of the university's work, in virtually every
department and administrative function. In the Fall 1965 academic
quarter over 1,000 students in 44 different courses used the computer
in some part of their assigned homework. From September 1, 1965,
to December 15, 1965, $150,000 worth of time for "unsponsored"
graduate student and faculty research was allocated. The demand
for "unsponsored" use during the 1965] 966 academic year has
doubled since the 1964-1965 yeara factor of two in one year in-
stead of the usual two. These numbers are the measure of Stanford's
success in computer education and computer science. But the success
has brought on a crisis, since under the present audit guidelines all
the "unsponsored" use must be paid for at the supportable rate. The
university's budget, with its slow growth from year to year, cannot
absorb the impact of a geometric growth process, at least not imme-
diately, because of a natural inertia in the budget. The crises in
university computing, like a man's death, came "unexpected."

When computing was "small business" at universities, it received
little attention from U.S. Government auditors. Because computing
came to involve very large sums of money, and because of actual
or presumed "irregularities" on the part of universities, the audit
agencies reacted (some would say overreacted) by issuing tightly
drawn audit guidelines, the effect of which will be to inhibit severely
the future growth of computer education. A short statement on the
audit policy by Courtney S. Jones, Assistant to the Controller, Stan-
ford University, is appended.

Mr. Jones suggested one way out of the crisisa change in the
cost-accounting policy being applied. Another possibility is a direct
congressional attack on the problem by enacting legislation estab-
lishing a policy toward, and appropriations for, educational uses of
computers.

The absurdity of the present situation is hard to communicate
in a short statement like this. It is best understood in the computer
room at a major university like Stanford on a Sunday afternoon,
after the run of jobs has been finished, and the computer and its
operator sit idle. To use it for the students' jobs would cost nothing
to anyone. The seconds, minutes, hours being wasted (translated
into computer activity at 250,000 operations per second) are ir-
recoverable.
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A Statement by Courtney S. Jones,
Assistant to the Controller, Stanford
University

Currently at Stanford for many hours a month the major computers
are idle, and yet students and faculty who are eager to use these
hours are turned away. It is reasonable to assume that a similar sit-
uation to a greater or lesser extent exists at most universities. The
situation is the result of a shortage of funds for nonsponsored use
of the computers in combination with the effect of the costing prin-
ciples required by the government for allocating computer costs.
The costing principles are set forth in the Bureau of the Budget
Circular A21, paragraph J37. It is difficult, if not impossible, to
attack the cost-accounting logic of the referenced paragraph that the
government pay only that percentage of the costs which is its share
based on hours of use. However, the result is that while the uni-
versities are providing computer services to government-sponsored
research at rates significantly less than commercial rates, they are
unable because of the costing mechanism to utilize without charge
residual idle time for training students. Stanford, which is presently
providing approximately $250,000 annually for nonsponsored users
of the computers, cannot afford to increase the amount of these funds
rapidly enough to meet the tremendous demand. Thus, computers
are forced to be wastefully idle while this student and faculty de-
mand for computer time goes unsatiated. An idle computer benefits
no one, and when one considers that computers are probably idle to
some extent in nearly all the universities in the nation, the amount
of waste is immense. Clearly this waste is not in the national interest.
It is also clear that a relatively simple remedy is at hand. The
wastage could be eliminated by a government policy overruling the
basic cost-accounting principle being applied, to the effect that the
idle time could be used by otherwise unsponsored students and
faculty. Such a policy properly implemented would result in no addi-
tional cost to the government. It would result in greater instruc-
tional and research benefits to the nation as the academic com-
munity utilized more fully the universities' computers.
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PhD Origins of Mathematicians in Certain
Categories

A Study Made for the COSRIMS Panel
on New Centers

At the request of the COSRIMS Panel on New Centers, the American
Mathematical Society compiled a list of the PhD origins of mathe-
maticians in the categories shown in Table E-2. Mathematicians who
received their doctorates before 1925 were not included in these
tabulations. With few, if any, exceptions, those listed as foreign
PhD's now teach in the United States.

The Panel next constructed the quality rating of PhD-granting
mathematics departments in the United States shown in Table E-1.
Quality ratings are given for the four successive decades (plus one
year) in the period 1925-1965, the ratings for 1955-1965 being de-
rived from Allan M. Cartter's study (see reference 32 of the main
text) and for the decade 1925-1934 from Raymond Hughes' 1934
study for the American Council on Education (see reference 32 of
the main text, page ix) . The ratings for the two intervening decades
are interpolations by the Panel.*

Using the ratings of Table E-1, CBMS Survey headquarters worked
out Tables E-2 and E-3. Table E-2 utilized the American Mathe-
matical Society compilation mentioned above. For Table E-3, the
numbers of PhD degrees granted were taken from Doctorate Produc-
tion in United States Universities 1920-1962 by Lindsey Harmon and

* Within each category, the listing is alphabetical.
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TABLE E-1 Leading United States Departments of Mathematics
Rated by Quality of Graduate Faculty

1925-1934 1935-1944 I 915-195 1955-1965

DISTINGUISHED

Chicago
Harvard
Princeton

DISTINGUISHED

Harvai d
Princeton

DISTINGUISHED

Chicago
Harvard
Princeton

DISTINGUISHED

California,
Berkeley

Chicago
Columbia
Harvard
MIT
NYU
Princeton
Stanford
Yale

STRONG STRONG STRONG STRONG

California, Berkeley California, Berkeley California, Berkeley Brandeis
Columbia Caltech Caltech Brown
Cornell Chicago Columbia Cal tech
Illinois Columbia Cornell Cornell
Johns Hopkins Cornell Illinois Illinois
Michigan Illinois Johns Hopkins Indiana
Minnesota Johns Hopkins Michigan Johns Hopkins
Pennsylvania Michigan Minnesota Michigan
Wisconsin Minnesota MIT Minnesota
Yale MIT NYU Northwestern

Ohio State Ohio State Pennsylvania
Pennsylvania Pennsylvania Purdue
Texas Stanford UCLA
Wisconsin Texas Virginia
Yale Wisconsin Washington

Yale (Seattle)
Wisconsin

Herbert Soldz of NAS-NRC and from the yearly lists published in
the Notices of the American Mathematical Society. The reader
should be warned that no canonical list of doctorates exists, and that
because of difficulties in classification and reporting, statistics from
different sources are in only fair agreement with one another.
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TABLE E-2 PhD Origins of Mathematicians in Certain Categories

CATEGORY OF

INDIVIDUAL

CLASSIFICATION OF PHDGRANTING

DEPARTMENT AT TIME INDIVIDUAL

RECEIVED PHD (AMERICAN PHD'S

SINCE 1925)

DISTIN-

GUISHED STRONG OTHER

FOREIGN PHD'S

SINCE 1925

(INCLUDES

AMERICANS

WHO OB-

TAINED PHD'S

ABROAD)

I. Gave invited
address at
meetings of AMS
in 1961-1966 34 23 9 19

II. Gave invited
addresses at
meetings of AMS
in 1954-1960 40 17 13 21

III. Gave invited
addresses at
meetings of AMS
in 1948-1953 23 19 9 25

IV. Gave invited
addresses at
meetings of ivms
before 1948 21 19 10 21

V. Gave invited
addresses (30
minutes or more)
at International
Congresses of
Mathematics since
World War II 36 13 6 37

VI. Members of National
Academy of Sciences 14 4 3 15

-1
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TABLE E-3 Number and Percentage of Mathematical Science PhD
Degrees Given by Distinguished and Strong Schools

TIME PERIOD

DISTINGUISHED S fRONG OTHER

'I OTALN % N % N %

1925-1929 73 31 109 46 55 23 237
1930-1934 89 29 163 41 144 36 396
1935-1939 43 11 227 60 114 30 384
1940-1944 47 12 189 52 128 35 364
1945-1949 75 16 234 50 162 34 471
1950-1954 149 14 447 42 462 44 1058
1955-1959 425 34 356 29 485 38 1266
1960-1964 714 32 574 25 958 43 2246
1960 93 31 89 30 115 39 297
1961 136 36 81 22 157 42 374
1962 127 34 88 23 163 49 378
1963 179 39 159 28 229 40 567
1964

1965
179

200
28

99

157

186

25

27

294

303

47
44

630

689

\


